
Automate
24.1.0
Best Practices and
Optimizations Guide



Copyright Terms and Conditions

Copyright © Fortra, LLC and its group of companies. All trademarks and registered trademarks are the property of their respective
owners.

The content in this document is protected by the Copyright Laws of the United States of America and other countries worldwide.
The unauthorized use and/or duplication of this material without express and written permission from Fortra is strictly prohibited.
Excerpts and links may be used, provided that full and clear credit is given to Fortra with appropriate and specific direction to the
original content.

202403040550



Overview 1

Performance 2

Triggers 2

Workflow design 3

Task Design 4

General/other considerations 4

Security 6

Secure the Automate environment 6

Secure the Automate installation 6

Secure Automate user access 7

Secure sensitive data 7

Development 9

The development environment 9

Workflows 9

Tasks 10

Conditions 12

Data containers (Variables, Datasets, Constants, Arrays) 12

General development 13

Optimizations 15

Automate installation architecture 15

How Automate runs scheduled jobs 16

Best Practices and Optimizations Guide www.fortra.com page: iii

Table of Contents



How to detect and avoid excessive triggering 18

Optimum workflow designs 22

Additional optimization settings 25

Best Practices and Optimizations Guide www.fortra.com page: iv

Table of Contents



Overview /

Overview
This guide is designed to provide best practices related to performance, security,
development, and optimizations for Automate, based on Fortra's experience working with
Automate customers. These best practices are provided to promote long-term maintenance
of your robotic process automation (RPA) project. While this document provides
recommendations, we recommend that each organization create and maintain their own
internal processes and best practices.

Think of best practices as an art as they involve competing requirements. For example,
maintainability may, in some cases, compete with performance. As such, the content
provided here is intended to be a guide rather than a set of strict rules.

The most common and avoidable issues Automate customers encounter are related to
performance, specifically using Automate in ways that unnecessarily burden the
application. Therefore, a major portion of this document deals with best practices related to
performance.

We also understands that some of our customers are as experienced as we are, if not more.
We invite you to join our Automation Insiders program to share your thoughts and
suggestions. Based on your feedback, we will review discussions and update this guide
periodically.

In addition, we offer the Automate Assessment performance tuning service
https://www.fortra.com/resources/guides/helpsystems-automate-services-
guide#assessment-services. You can request this service at
https://www.fortra.com/product-lines/automate/services-and-trainings/request. However,
this guide captures most of that knowledge to help you get the most of your Automate
application.

Best Practices and Optimizations Guide www.fortra.com page: 1

https://helpsystems-automate.influitive.com/users/sign_in
https://www.fortra.com/resources/guides/helpsystems-automate-services-guide#assessment-services
https://www.fortra.com/resources/guides/helpsystems-automate-services-guide#assessment-services
https://www.fortra.com/product-lines/automate/services-and-trainings/request


Performance / Triggers

Performance
Many Automate customers tend to develop their tasks and workflows in the simplest, most
straightforward way, without giving any thought to security, performance, or long-term
maintenance of the system. Initially, this does not cause any issues, but it tends to become
a problem over the course of months or years after adding many tasks and workflows to the
Automate application.

The most common adverse effects to Automate performance are:

l Execution server CPU usage spikes around the time workflows are scheduled to
start, slowing down the system overall.

l Orphaned workflows or tasks. This occurs when:
l A task or workflow's status it has been running for extended periods of time.
l A workflow's status shows it is in Running mode with no tasks.

l Delayed task and workflow execution.
l Memory utilization building up on the Execution Server or agent machines.
l Excessive growth in the Execution Logs table in the back-end database.
l The Execution Output panel shows multiple or a growing number of workflows or
tasks in Pending status.

l Agents are reporting they are offline.
l Execution Server or agent system application event logs are flooded with repetitive
error messages.

l System failure at the server or with agents.

The presentation of symptoms may differ, but the cause is the same in all cases – there are
costs associated with automation that are not accounted for. For each workflow, the trigger
requirements must be met and recognized or fired, automation markup language (AML)
must be interpreted and transmitted across the network, and variables and structures must
be instantiated to do the work. These operations happen quickly, but they are not free and
enough of them triggered together can overwhelm even the most well-provisioned system.

Triggers

Stop triggering tasks or workflows so aggressively
Triggers are expensive regarding resource consumption. As such, be mindful when using
triggers, especially schedule-based triggers which fire in short intervals. If the work

Best Practices and Optimizations Guide www.fortra.com page: 2



Performance / Workflow design

associated with a schedule-based trigger cannot be completed before the next firing of the
trigger, the trigger can cause an increasing workload that can eventually overwhelm the
system. Alternatively use in-task loops to replace iterative tasks.

Balance the triggering
Rather than setting up many triggers to fire at the same time or using the same schedule
trigger for many tasks and workflows, which can result in a performance spike, try to
distribute the triggers over a period.

Reduce the number of file triggers
Monitoring file systems is an expensive in terms of maintenance. Use file triggers for small
amounts of infrequent file changes. If you are expecting an enormous number of files in a
short period of time, switch to a schedule-based trigger and batch process the workload or
use a loop to monitor the file system. Using a loop ensures that the file system is queried
only after the current work on it is complete.

In addition, avoid monitoring network shares or replace them with a local agent when
possible. Generally, try to avoid placing multiple triggers within same workflow.

Workflow design

Avoid multiple independent branches in a single workflow
We strongly recommend to not use multiple independent branches in a single workflow as it
makes it difficult to trace individual branch execution from the execution logs. The workflow
engine is not optimized for this kind of structure, and it can cause performance issues.
Instead, use different workflows for each independent branch.

Use Previous Agent and Trigger Agent

Best Practices and Optimizations Guide www.fortra.com page: 3



Performance / Task Design

When possible, use the Previous Agent and Trigger Agent System Agents in your workflow.
You can pair the Trigger Agent with Previous Agent for even more flexibility. Avoid Static
Agent assignment whenever possible.

Task Design

Set task priorities correctly
Make use of task priorities to prioritize your workload accordingly and to achieve the best
results. We recommend setting tasks to fail if their Priority condition threshold is exceeded
to track and audit the execution logs. Refrain from keeping the default settings of Run on
ALL Agents. Round Robin is a good option to distribute the load among all agents. See
Priorities in the Automate User Guide on the Fortra Support Portal at
https://support.fortra.com/ for more information.

General/other considerations

Use a dedicated machine for the Execution Server and
Management Server
We recommend you use the following deployment architecture:

l Use a dedicated machine for the Execution Server and Management Server
l Do not install an agent on this machine
l Do not run studio tools on this machine

Best Practices and Optimizations Guide www.fortra.com page: 4

https://community.fortra.com/


Performance / General/other considerations

l Use an appropriate datastore if you to intend to use the system with a large number
of workflows/tasks

l It is not recommended to use free versions of DB engines (for example,
preinstalled SQL Express or Oracle) as they are typically not fully functional and
key features are not accessible until a full version is purchased.

l If performance is suffering, we recommend moving the datastore to its own
dedicated machine

Correctly set Workflow and Task Timeouts
Setting valid Workflow Timeout and Task Timeout helps track stalling tasks and resources
locks. Some of the main causes for overloaded systems is tasks hanging on the agent side,
which can increase memory usage and cause CPU spikes which results in queued tasks and
delays with triggering and execution. See Workflow Timeout and Timeout in the Automate
User Guide on the Fortra Support Portal at https://support.fortra.com/ for more information.

Best Practices and Optimizations Guide www.fortra.com page: 5

https://community.fortra.com/


Security / Secure the Automate environment

Security
Security recommendations and best practices include securing the Automate environment,
installation, and user/group access.

Secure the Automate environment
The following are guidelines for securing the Automate environment:

1. Secure your physical computer infrastructure using industry standard practices. See
the following two resources for more information:

a. The Center for Internet Security website https://www.cisecurity.org/.
b. The University of Connecticut's Server Hardening Standard (Windows) guide

https://security.uconn.edu/server-hardening-standard-windows/#.
2. Secure the Windows operating system using industry standard practices. See the

NIST SP 800-123, Guide to General Server Security document at
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf for
more information.

3. Secure the database using industry standard practices. See the following Microsoft
documents for more information:

a. Securing SQL Server https://docs.microsoft.com/en-us/sql/relational-
databases/security/securing-sql-server?view=sql-server-2017 .

b. See SQL Server 2016 STIG YY22M01 Checklist Details
https://nvd.nist.gov/ncp/checklist/838 .

Secure the Automate installation
The following are guidelines for securing the Automate installation:

1. Configure a secure connection to the database. See Microsoft's Enable encrypted
connections to the Database Engine doc at https://docs.microsoft.com/en-
us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-
database-engine?view=sql-server-2017 doc for more information.

2. Configure SSL/TLS connections between components.
3. Configure Server Management Console (SMC) Sessions in Automate. See

SMC Sessions in the Automate User Guide on the Fortra Support Portal at
https://support.fortra.com/ for more information.

Best Practices and Optimizations Guide www.fortra.com page: 6

https://www.cisecurity.org/
https://security.uconn.edu/server-hardening-standard-windows/#
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
https://docs.microsoft.com/en-us/sql/relational-databases/security/securing-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/security/securing-sql-server?view=sql-server-2017
https://nvd.nist.gov/ncp/checklist/838
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine?view=sql-server-2017
https://community.fortra.com/


Security / Secure Automate user access

4. Set the Administrator's password in Automate. See Users in the Automate User
Guide on the Fortra Support Portal at https://support.fortra.com/ for more
information.

5. Enable API access in Automate. See API Security in the Automate User Guide on the
Fortra Support Portal at https://support.fortra.com/ for more information.

6. Configure the Event Monitor to prevent user interaction by way of the following
parameters in Automate:

a. From the Automate Server Management Console's navigation bar, select
Options > Default Properties > Indicators.

i. Select Enable right-click menu on tray icon.
ii. Select Enable the task interruption hotkey.
iii. In the Task interruption hotkey box, enter the desired hot key

combination.
b. From the Automate Server Management Console's navigation bar, select

Options > Default Properties > Execution.
a. Select User can stop this task.

Secure Automate user access
The following are guidelines for securing Automate user access:

1. Define user groups/roles and permissions. To streamline user access management,
create user groups, assign users to those groups, and then assign permissions to
the roles. See User Groups in the Automate User Guide on the Fortra Support Portal
at https://support.fortra.com/ for more information.

2. Apply item permissions throughout product, by configuring which users have
permissions to each object. See System Security (Permissions) in the Automate User
Guide on the Fortra Support Portal at https://support.fortra.com/ for more
information.

3. Apply system-wide permissions. Configure which permissions user groups and/or
users have in Automate. See System Security (Permissions) in the Automate User
Guide on the Fortra Support Portal at https://support.fortra.com/ for more
information.

Secure sensitive data
Follow secure development practices when writing workflows & tasks by configuring the
following options in Automate:

Best Practices and Optimizations Guide www.fortra.com page: 7

https://community.fortra.com/
https://community.fortra.com/
https://community.fortra.com/
https://community.fortra.com/
https://community.fortra.com/


Security / Secure sensitive data

1. Create credential variables to share among all or specific users and/or groups. See
Credentials in the Automate User Guide on the Fortra Support Portal at
https://support.fortra.com/ for more information.

2. Create constants on the agent machine. See Constants in the Automate User Guide
on the Automate User Guide on the Fortra Support Portal at
https://support.fortra.com/ for more information.

3. Create a SQL connection for each agent. See SQL Connections in the Automate User
Guide on the Fortra Support Portal at https://support.fortra.com/ for more
information.

Best Practices and Optimizations Guide www.fortra.com page: 8

https://community.fortra.com/
https://hstechdocs.helpsystems.com/manuals/automate/ame_11/Default.htm
https://community.fortra.com/
https://community.fortra.com/


Development / The development environment

Development
Below are the best practices for maintaining a healthy development environment.

The development environment
Document all development environments, especially if overall ecosystems contain multiple
environments (for example, PROD, DEV, etc.). Define what each environment is used for, as
well as the number of development tools and agents for each environment.

Using Agent Groups
Set the appropriate Agent Group distribution when using them. Create a user group for each
agent, assign the agent to that group, and then assign items in workflows to the group. This
set up makes it easy to swap one agent for another one and is useful for when you replace
an agent with new hardware, or you need to take it offline for maintenance.

See User Groups and Agent Groups in the Automate User Guide on the Fortra Support Portal
at https://support.fortra.com/ for more information.

Workflows
For general information on Workflows, see Workflows in the Automate User Guide on the
Fortra Support Portal at https://support.fortra.com/ for more information.

Workflow organization and nomenclature
Organize workflows in a way that best suits your needs, whether by Application, Line of
Business, Department, etc. Begin with an agreed upon foundation and create and organize
Automate folder structures at the Workflows and Repository levels. For example, if you
organize workflows by department, create a Human Resources workflow.

When naming workflows, keep names consistent with the organizational structure put in
place at the workflow level:

l Keep workflow names under 25 characters.
l Consider using a standard prefix.
l Decide on a workflow name delimiter (for example, "_" or "-").

Best Practices and Optimizations Guide www.fortra.com page: 9

https://community.fortra.com/
https://community.fortra.com/


Development / Tasks

l Use intuitive and meaningful names. For example, while creating workflows in the
Human Resources folder, prefix each workflow name with “HR” followed by a
workflow name that describes the process (for example, "HR Account Creation").

Workflow development
You can simplify workflow creation by using a standard nomenclature for data containers,
tasks, and making use of the Automate Repository. Dynamic task, condition, and data
container creation aids in this area. See Tasks, Events & Conditions, and sections on Data
Containers (Variables, Datasets, Arrays, and Constants) in the Automate Plus/Ultimate User
Guide on the Fortra Support Portal at https://support.fortra.com/ for more information.

When creating workflows, create a roadmap by writing out your workflow process including
triggering events, conditions, logic, and tasks on paper or a whiteboard before building them
in Automate. This approach allows you to create a clear view of automation requirements,
as well as help save time with formatting your task or workflow.

Use a workflow's Notes property to document important information regarding it, allowing
users to understand the reasoning behind all objects, concepts, and logic used with the
workflow. To access the Notes property:

1. Double-click your workflow.
2. Select Notes.
3. Enter a note in the box.
4. Select OK.

Workflow security
Set group and user permissions for each workflow. To set permissions:

1. Double-click your workflow.
2. Select Security.
3. See System Security (Permissions) in the Automate User Guide on the Fortra Support

Portal at https://support.fortra.com/ for more information.

Tasks
For general information on Tasks, see Tasks in the Automate User Guide on the Fortra
Support Portal at https://support.fortra.com/ for more information.

Task organization and nomenclature

Best Practices and Optimizations Guide www.fortra.com page: 10

https://community.fortra.com/
https://community.fortra.com/
https://community.fortra.com/


Development / Tasks

Task organization should follow the same general guidelines as workflows:

l Keep task names under 30 characters.
l Consider using a standard prefix.
l Decide on a task name delimiter (for example, "_" or "-").
l Use intuitive and meaningful names.

Task development
l Modularize tasks for reusability. Small, dynamic tasks make for quick and seamless
workflow development by way of the Repository.

l Stick to a standardized naming convention for data containers so that you can plug
tasks into any workflow or function.

l Use a task's Notes property to document essential information regarding it, allowing
users to understand the reasoning behind all objects, concepts, and logic used with
the task.
To add a note:

1. Double-click your workflow.
2. Select Notes.
3. Enter a note in the box.
4. Select OK.

l Build and test tasks in the Automate 2024 Task Builder Debug Panel first. Once a
task runs correctly, run the task from the Workflow Designer to ensure that it has the
correct configuration, credentials, and settings to run on the agent (that is, Bot)
properly. See Task Builder Debug Panel and Workflow Designer in the Automate User
Guide on the Fortra Support Portal at https://support.fortra.com/ for more
information.

l Follow these guidelines when building and testing in the Task Builder:
l Set Breakpoints. See Breakpoints in the Automate User Guide on the Fortra
Support Portal at https://support.fortra.com/ for more information.

l Create Regions within larger tasks to make the task steps easier to follow. See
Regions in the Automate User Guide on the Fortra Support Portal at
https://support.fortra.com/ for more information.

l Save your task frequently.
l When using Sessions, always include a Close Session step with the task to end that
session.

Best Practices and Optimizations Guide www.fortra.com page: 11

https://community.fortra.com/
https://community.fortra.com/


Development / Conditions

l For password fields, use Credentials whenever possible. See Credentials in the
Automate User Guide on the Fortra Support Portal at https://support.fortra.com/ for
more information.

l For file paths, use the Constants option. See Constants in the Automate User Guide
on the Fortra Support Portal at https://support.fortra.com/ for more information.

l For any kind of stand-alone number, place it in a descriptive variable or constant.

Task security
Set group and user permissions for each task. To set permissions:

1. Double-click your task.
2. Select Security.
3. Select a Group or User Name from the Available box, and then select Move to move

it to the Selected box.
4. Select OK.

See System Security (Permissions) in the Automate User Guide on the Fortra Support Portal
at https://support.fortra.com/ for more information.

Conditions
Automate supports numerous condition types such as File System, Database, and Schedule
Conditions (Triggers).

Conditions nomenclature
When naming conditions, follow these guidelines:

l Keep condition names under 30 characters.
l Use a prefix to distinguish conditions. For example, “SCH” for Schedule Condition,
“DB” for Database Condition. You can create subfolders for better organization.

l Use a standard naming based on interval and trigger time. For example, using
delimiters such as “_”, for schedule trigger running every 20 minutes SCH_20M , for
schedule trigger running daily at 7 AM : SCH_Daily_7AM. Add a reference to the job
as well to help track the execution like: SCH_FTP_xxx_Daily_7AM.

Data containers (Variables, Datasets, Constants, Arrays)

Best Practices and Optimizations Guide www.fortra.com page: 12

https://community.fortra.com/
https://community.fortra.com/
https://community.fortra.com/


Development / General development

l Use a standard prefix for each of the different types of containers.
l Use intuitive and meaningful names.
l Document the agreed-upon nomenclature and follow the chosen conventions across
all workflow and task development.

l Only use the underscore character as a delimiter (_), or nothing at all:
l Variables

l Prefix variables with var or VAR:
l varDate
l VAR_Username

l Datasets
l Prefix datasets with ds or DS:

l dsTest
l DS_Results

l Constants
l Prefix constants with cst or CST:

l cstFilename
l CST_FolderPath

l Arrays
l Prefix arrays with arr and ARR:

l arrData
l ARR_Data

General development
l Remember “The last saved window rule”:

l  Ensure that only one instance of the Workflow Designer and/or Task Builder
are open on your desktop at any given time.

l If multiple instances of the same Task are open in the Task Builder, the
last window where changes are saved will override any other instances of
that task.

l If multiple instances of the same Workflow are open in the Workflow
Designer, the last window where changes are saved will override any
other instances of that workflow.

l Use documentation generously. This produces a clear picture of all the intricate
details affecting the components of the Automate environment and captures the
intent of the design.

Best Practices and Optimizations Guide www.fortra.com page: 13



Development / General development

l When using loops, build and test the automation process outside of the loop to
ensure automation behaves as expected, and then move those steps within the loop
to continue building/testing.

l Use correct formatting and indentions. For example, if looping, indent all the
steps/objects within the loop to make the task easier to read, understand, and
follow.

l If automating FTP or SharePoint processes, utilize the built-in browsers within the
Action Configuration properties.

l Create a standard error handling procedure for all Automate developers to follow, if
possible.

l Append dates and times to files and logs whenever possible.
l Use global options like Constants, SQL Connections, Global Email Settings, Default
Agents, and Default User whenever possible. If multiple tasks use the same Constant
or SQL Connection, you can perform changes in one place rather than opening each
task associated with the changed resource.

l The File Systems monitoring (trigger/condition) only applies to Windows. It cannot
monitor FTP folders.

Best Practices and Optimizations Guide www.fortra.com page: 14



Optimizations / Automate installation architecture

Optimizations
How you design Automate jobs and configure your environment dictates the performance
and stability of the system. As your organization grows, you will add more jobs over time.
Most Automate developers tend to use repetitive approaches in workflow designs, and
reuse triggers and tasks to minimize development and updates.

The purpose of this chapter is help Automate developers and administrators optimize
Automate jobs to use minimal system resources.

Automate installation architecture
Installation architecture is important for overall system efficiency. For example, a simple
environment setup of Automate would include two agents and three Server Management
Console installations (each installed using default options). The following design diagram
illustrates this environment and shows which modules are installed on each machine:

l Machine 1 - Execution Server, Management Server, SQL Server Express Database,
Agent 1, and Server Management Console

l Machine 2 - Agent 2 and Server Management Console
l Machine X - Server Management Console

In Automate, the Execution Server, database, and agent machine modules consume the
most resources in a functional environment. To improve the design in the diagram, we
recommend the following optimizations:

Best Practices and Optimizations Guide www.fortra.com page: 15



Optimizations / How Automate runs scheduled jobs

l Move or install the database, Execution Server, and each agent on a separate
machine.

l Do not install agents on the server. Agents perform task execution which increases
the associated machine's CPU and memory usage.

l If you intend to use Automate at high capacity, switch to an Enterprise version of a
database engine.

After applying these optimizations, the following diagram shows the improved design:

How Automate runs scheduled jobs
To illustrate how Automate runs scheduled jobs, take an execution flow of a simple,
repetitive job that runs every minute (for example, downloading files from an FTP server and
then moving those files into a location).

Most customers follow the approach of using a workflow with a scheduled trigger that fires
every minute:

Best Practices and Optimizations Guide www.fortra.com page: 16



Optimizations / How Automate runs scheduled jobs

Another approach is using two separate tasks to do each action separately; one to
download the files, the other to move them (sometimes for reusability purposes):

Either approach starts with a trigger that fires by responding to its event, which results in
creating an instance of the workflow. Once a workflow instance initiates (identified as
transaction in the logs), the execution server orchestrates the flow of execution between
each of the workflow's items (for example, tasks, evaluations, waits, etc.). If the flow leads
to an executable (task or process), an instance of that executable gets created, wrapped by
all its variables and settings, and then queued to run on an agent.

Once an agent picks a task to execute, it applies priorities to the task, and if all criteria is
met, the task starts. The task will continue to run if the following conditions are met:

l The task did not complete
l Exceptions did not occur
l The task did not time out

When a task finishes execution, the status and results of that execution, along related data,
are reported back to the Execution Server. Once the Execution Server receives the results, it
releases all resources, and then continues with the next workflow item. This cycle will
continue as long as:

l There are items to execute in the workflow
l Exceptions do not occur
l Workflow does not time out

The previous approaches are all valid, yet they hide heavy execution costs on the Execution
Server and agent sides, which eventually results in excessive triggering. The more jobs
added, the worst the symptoms become.

Excessive triggering
In large scale environments, repetitive workflow triggering directly impacts Automate's
performance and stability. Triggering is a costly operation, and many Automate developers
need to consider the following factors:

Best Practices and Optimizations Guide www.fortra.com page: 17



Optimizations / How to detect and avoid excessive triggering

l The number of triggers firing within a period
l The number of triggers using short intervals (for example, 1 second to 5 minutes)
l The number of workflows triggering by the same trigger

The performance threshold is also dependent on criteria, such as:

l Hardware specifications of the machine running the Execution Server (CPU, memory,
etc.)

l Domain policies
l Network speed
l Database engine
l Third-party services

IMPORTANT: Third-party services are a key factor in determining a system's
performance. For instance, the resources required to run a job that downloads
files from an FTP service varies based on the FTP service vendor, frequency of
the job, and the size of the files.

By keeping track of these factors, each environment can create its own threshold level.

Why you should avoid excessive triggering
Once scheduling conditions are met, all workflows containing a trigger initiate. The more
workflows you have triggering, the more system resources you will need to run those
workflows.

For example, scheduling jobs that exceed what the system's resources can handle can
result in various issues (for example, agent disconnect messages, etc.) This is an indication
that the Execution Server is overloaded due to excessive triggering. Without the proper
reporting and settings, issues like this can go undetected resulting in an unstable system.

A workaround to this issue is restarting the Automate services prior peak hours; however,
you can avoid this by performing the following optimizations to the system:

l Utilization of the Execution Server resources to handle triggering, flow management,
database transactions, etc.

l Reducing agent server communication
l Utilization of agent machine's resources
l Efficient logging

How to detect and avoid excessive triggering

Best Practices and Optimizations Guide www.fortra.com page: 18



Optimizations / How to detect and avoid excessive triggering

Review trigger distribution periodically
Reduce the number of triggers firing within proximity of each other by changing when and
how often those triggers fire. This promotes a less aggressive triggering schedule.

Run the All Workflows Triggers Detail SQL query periodically to identify patterns, such as:

l Substantial number of workflows triggering at once
l Triggers with short intervals (1 second to 5 minutes)
l Peaks and valleys in the triggering schedule

The following is a sample output of the All Workflows Triggers Detail SQL query which
returns a list of all scheduled triggers within all available workflows:

In this sample, you can see that four workflows that were running repetitively within small
intervals and they were identified by filtering and sorting the query results using the
following:

l Sort by Last Launch Time - Sorting by this column groups together patterns of
excessive triggering within a period.

l Filter by Minutes and Seconds, then sort by Frequency - Filtering by minutes and
seconds shows triggers with small intervals (1 sec > 5 minutes). and then sorting the
results by Frequency shows how often they ran.

Best Practices and Optimizations Guide www.fortra.com page: 19

https://s3.amazonaws.com/hstechdocs.helpsystems.com/kbfiles/automate/sql_queries/all_workflow_triggers_details.sql


Optimizations / How to detect and avoid excessive triggering

For instance, a workflow set to trigger every three minutes has a high probability of
overlapping, queuing, or failing. Without proper logging and monitoring, it is likely this could
go unnoticed.

Trigger reusability/bad distribution
During analysis we might find patterns indicating excessive use of trigger reusability or bad
distribution.

For example, the following pattern appears in this sample report image:

l Daily at 1:00 AM, 26 workflows are scheduled to trigger at once
l The 26 workflows are then followed by 12 workflows to trigger daily at 1:05 AM

Checking other intervals such as minutes, hours, etc., can reveal a large number of repetitive
triggers within the same period, indicating a peak around 1:00 AM.

In another example, the pattern below shows a large number of triggers with small intervals.
It is a best practice to review workflow designs and trigger intervals, and optimize them
using the approaches below:

Best Practices and Optimizations Guide www.fortra.com page: 20



Optimizations / How to detect and avoid excessive triggering

The reports above show a high probability of system instability, resulting in the following
behavior:

l A large number of jobs queuing on the Execution Server machine, waiting to be
picked up by agents

l Jobs getting stuck on an agent machine due to a lack of available system resources
l The Execution Server becoming overloaded by growing numbers of new requests
l New jobs queuing while triggered jobs remain unfinished

The previous state of the system eventually causes communication failures between the
Execution Server and agent(s). By design, the agent tries to reestablish a new connection
with the Execution Server which can leave previously unfinished jobs in an incomplete state.

It is inevitable that the Execution Server and agent will become overloaded by those
patterns, as the number of new triggers will exceed the number of workflows finishing
execution. The key is to distribute the balancing load effectively. A best practice is to use
the following formula for determining the interval of any scheduled trigger:

Interval > average workflow execution time + 2 minutes

To find the right intervals, manually run a job during peak hours, and then use its execution
duration value (this applies to development, staging, and production environments). This
will yield an ideal initial value for the average workflow execution time for you to review later
by analyzing the execution logs.

Monitor the number of instances created
One of the main causes for system instability is when triggers with small intervals create an
excessive number of simultaneous task instances. Instance counts lead into detecting
those types of behaviors and you need to adjust them by changing the workflow design.

Best Practices and Optimizations Guide www.fortra.com page: 21



Optimizations / Optimum workflow designs

To see the total number of instances created within a period of time on your system, run the
Instances Count Basic SQL query. High numbers appearing in the query results indicate
excessive triggering for a workflow or task. Using this query is an effective way to identify
workflows and tasks that trigger frequently, and then start optimizing them (if applicable).
We recommend starting with the workflows containing the smallest intervals. For more
information, see Optimum workflow designs on page 22. This query will also show the
following:

l The count, the type of resource, the state of the execution (that is, failure, success,
or running), and the location of the workflow and task for easy access. It is essential
to keep the numbers reasonable, depending on your organization's needs.

l If there is gap between the total number of instances reported as Running vs. Failure
vs. Successful. These numbers should be close, but major differences mean
workflows and tasks are stalling or failing frequently.

Resource locks

Simultaneously executing tasks that access the same resources (for example, file access,
FTP, email, etc.) can result in locking those resources, which can then result in tasks
stalling.

Optimum workflow designs
In this section, the goal is to introduce more efficient workflow design patterns to current
and new jobs.

Best Practices and Optimizations Guide www.fortra.com page: 22

https://s3.amazonaws.com/hstechdocs.helpsystems.com/kbfiles/automate/sql_queries/instances_count_basic.sql


Optimizations / Optimum workflow designs

Workflow loops
In How Automate runs scheduled jobs on page 16, we started from a basic workflow design
for the job described, also known as a simple loop in the following images:

Both approaches are valid to address the job's need, yet this simple loop is one of the most
expensive approaches with running jobs, especially when:

l The workflow runs frequently
l Tasks within a workflow might take longer than the interval of the trigger
l The job is divided into multiple small tasks (for example, reusability, the need to
execute parts of the job on different agents, or agent groups)

l The priorities/timeouts are not set correctly

If you intend a workflow to perform a job repetitively, use loops within tasks to avoid the
workflow triggering frequently which reduced the number of instances created.

The following is an alternative approach that utilizes an internal loop within the task.
Applying this approach to the workflow loop design can look like the following examples:

1. Consolidating the logic into one task/agent. Download Optimized Workflow - Single
Task to view this workflow on your system.

Best Practices and Optimizations Guide www.fortra.com page: 23

https://s3.amazonaws.com/hstechdocs.helpsystems.com/kbfiles/automate/workflow_templates/optimized_wf_single_task.ampkg
https://s3.amazonaws.com/hstechdocs.helpsystems.com/kbfiles/automate/workflow_templates/optimized_wf_single_task.ampkg


Optimizations / Optimum workflow designs

2. Executing the logic on two different tasks/agents. Download Optimized Workflow -
Two Tasks to view this workflow on your system.

In these templates, the logic executes in a task infinitely until a condition is met or the task
fails. The workflow automatically re-initiates the tasks in this design if the task fails/stops
with respect to its priority setting. The Safety Scheduler trigger ensures there is a version of
this workflow running, and the task's priority setting ensures there is only one instance of
that task on the agent. The Safety Scheduler trigger's interval determines how often the
execution status is checked. These changes step back the aggressiveness of the trigger
condition, setting a more manageable interval.

Since the goal is to reduce excessive schedule triggering in this example, we recommend
setting the Safety Scheduler trigger to fire in minutes (10+).

Refrain from using workflow loops to check the connection status of an agent. Using
workflow loops with small intervals adds significant overhead. To monitor the status of an
agent or another resource, use the optimized task loop approach instead.

Task loops
In Workflow loops on page 23, we finished setting up the workflow. The next step in the
optimization process is to take the steps from the task(s) shown in How Automate runs
scheduled jobs on page 16 and put it in the internal loop of this task design (see image).
This loop repeats the job on the agent side until either a condition is met, or the job fails.

Best Practices and Optimizations Guide www.fortra.com page: 24

https://s3.amazonaws.com/hstechdocs.helpsystems.com/kbfiles/automate/workflow_templates/optimzed_wf_two_tasks.ampkg
https://s3.amazonaws.com/hstechdocs.helpsystems.com/kbfiles/automate/workflow_templates/optimzed_wf_two_tasks.ampkg


Optimizations / Additional optimization settings

The internal loop's wait time or conditions should reflect the corresponding scheduled
interval of the workflow being optimized.

The template will handle its own task failures and restart a new instance automatically. This
requires exception handling logic to follow up with the task's failures, either at the task level,
step level, or workflow level. It is best practice to add error notifications at the workflow and
task level.

Additional optimization settings
The following parameters and report can help with monitoring the behaviors discussed so
far.

Workflow and Workflow Item Timeout

The Use Timeout values should greater than the maximum job execution time and intervals
used.

Reports > Workflow Durations

To help with preventing workflow overlap executions and better determine schedule
intervals to account for a full cycle of executions, we recommend Automate developers
review the Min and Max times in the Workflow Durations report.

Priorities

Priorities control simultaneous tasks running on an agent.

Best Practices and Optimizations Guide www.fortra.com page: 25



Optimizations / Additional optimization settings

When initially designing a system or optimizing it, we recommend setting the Running
instances threshold parameter to 1, and then increase as needed.

Setting the If the task does not run, treat as parameter to Failure when the number of
instances exceed a certain threshold during the optimization work, helps the Automate
developer audit triggering cycles in the execution logs.

IMPORTANT: Running simultaneous task instances increases the probability of resource
locks, which can lead to tasks stalling at the agent side, delayed start for scheduled
jobs, and potentially creating a bottleneck at the Execution Server or agent machine.
Once the system reaches a stable state, users can increase the threshold as needed to
meet their organization's needs. You may need to perform additional optimizations if
the new threshold creates the same bottleneck scenario.

Agent Group Distribution

When using agent groups, set the appropriate Agent Group Distribution option. This
parameter can have the most impact on the load directed to specific agents and each
option has pros and cons.

For example, if you want a successful execution of tasks, then select Run on each agent in
order until a successful result but ensure the order of the agents within the group is set
correctly.

Best Practices and Optimizations Guide www.fortra.com page: 26



Optimizations / Additional optimization settings

In another example, if the goal is to have a balanced load, then Run on a single agent in
round-robin fashion will be more suitable.

Selecting Run on all agents can lead to potential redundancy in task execution for all
agents, creating more instances which leads to overloaded system.

Consider all options based on the following:

l The goal of having this logic in place (success vs balancing)
l The system resources of the agent machine
l Dedicated agents for certain tasks only

Best Practices and Optimizations Guide www.fortra.com page: 27


	Overview
	Performance
	Triggers
	Workflow design
	Task Design
	General/other considerations

	Security
	Secure the Automate environment
	Secure the Automate installation
	Secure Automate user access
	Secure sensitive data

	Development
	The development environment
	Workflows
	Tasks
	Conditions
	Data containers (Variables, Datasets, Constants, Arrays)
	General development

	Optimizations
	Automate installation architecture
	How Automate runs scheduled jobs
	How to detect and avoid excessive triggering
	Optimum workflow designs
	Additional optimization settings


