
Sequel 11

Programmer Guide

Copyright Terms and Conditions

Copyright © Fortra, LLC and its group of companies. All trademarks and registered trademarks are the property of their
respective owners.

The content in this document is protected by the Copyright Laws of the United States of America and other countries world-
wide. The unauthorized use and/or duplication of this material without express and written permission from Fortra is strictly
prohibited. Excerpts and links may be used, provided that full and clear credit is given to Fortra with appropriate and spe-
cific direction to the original content.

202212100203

About This Guide iii

About This Guide

This manual is intended for programmers and database administrators that use the Sequel data
retrieval system.It is a reference manual that provides technical information about Sequel’s com-
ponents (kernel, view editor, report writer, tables and scripting) and how they work.

This manual is divided into several sections:

Part 1 is introductory and describes the basic structure of Sequel and its functions.

Part 2 documents the syntax for each Sequel command and their parameters.

Part 3 describes the extra “layer” of security that is afforded by the exclusion dictionary. It lets
you establish file and field level security for users with access to the user interface. You can
restrict them from creating and running views over files or fields that should be protected with-
out affecting the normal operations of their current programs.

Part 4 gives programming examples and additional information about creating and using run–
time prompted views.

Part 5 provides documentation about the data modification capabilities of Sequel. It shows how
to use the UPDATE, INSERT, and DELETE commands. A discussion of commitment control
and how it can be used effectively is also included.

Part 6 discusses the performance considerations associated with Sequel requests. It also offers
some ideas that may help you measure and improve the performance of your views and reports.

Part 7 catalogs some important Sequel objects and considerations for the “extra” authority
requirements of USRPRF(*OWNER) programs and system objects.

The Appendix discusses Dynamic SQL which is a utility used within our BLDJDELF command
which builds logical files over JD Edwards files.

The Index at the back of this manual provides a cross reference of all of the important topics.
Use it to quickly locate the information that you need.

Additional information

Less technical aspects of Sequel are documented in the Sequel SQL Reference Guide. You can
refer to it for general information about each part of the Sequel system and how to use it.

iv Sequel 11 Programmer’s Guide - About This Guide

Contents v

Contents
Contents . 1-v
Introduction . 1-1

Components of Sequel . 1-2
Features of Sequel . 1-5
Sequel Objects . 1-7
Contact Fortra . 1-10

Command Reference . 2-1
ANZAUDDTA (Analyze Audit Data) Command 2-7
BCHEXECUTE (Submit Execute To Batch) Command 2-8
BCHPRINT (Submit Print To Batch) Command 2-9
BCHREPORT (Submit A Sequel Report) Command 2-10
BCHSCRIPT (Submit A Sequel Script) Command 2-11
BLDJDELF (Build view from JDE definition) Command 2-12
BLDOPTF (Build Option File) Command . 2-15
CFGQRYC04 (Set REPORT Message Handling) Command 2-17
CHGAUTMODE (Change Authorization Mode) Command 2-18
CHGVIEW (Change View Definition) Command 2-19
CHGRPTD (Change Report Description) Command 2-25
CHGTBLD (Change Table Description) Command 2-28
CHKIFSLOCK (Check IFS Locks) Command 2-29
CRTDASHLNK (Create Dashboard Link) Command 2-30
CRTSCRIPT (Create Script) Command . 2-32
CRTVIEW (Create View) Command . 2-37
CVTPDMFSQL (Convert PDM File to Sequel) Command 2-48
CVTQRY (Convert Query) Command . 2-49
CVTRPT (Convert Report Format) Command 2-52
CVTSQTOIFS (Convert Sequel Objects to IFS) Command 2-53
CVTSYNTAX (Convert Syntax) Command . 2-55
CVTVIEW (Convert View) Command . 2-56
CVTWHBLDR (Convert Warehouse Builder) Command 2-57
DELETE (Delete Records With a View) Command 2-59
DISPLAY (Display View Data) Command . 2-63
DLTAUDDTA (Delete Audit Data) Command . 2-66
DSNREPORT (Design A Sequel Report) Command 2-69
DSNSCRIPT (Design a Sequel Script) Command 2-73
DSNTABLE (Design A Sequel Table) Command 2-76
DSNVIEW (Design A Sequel View) Command 2-78
DSPDASHD (Display Dashboard Description) Command 2-80

vi Sequel 11 Programmer’s Guide - Contents

DSPRPTD (Display Report Description) Command 2-84
DSPSCRIPTD (Display Script Definition) Command 2-89
DSPTBLD (Display Table Description) Command 2-93
DSPVIEWD (Display View Description) Command 2-97
EXECUTE (Execute To A File) Command . 2-102
EXECUTEVPT (Execute a VPT Object) Command 2-112
GPHAUDSUM (Graph Audit Summary) Command 2-113
INSERT (Insert Records Into A File) Command 2-114
LSTDCTOBJ (List Sequel Authority By Object) Command 2-120
LSTDCTUSR (List Sequel Authority Dictionary By User)
Command . 2-121
MGRSQLOBJ (Migrate Sequel Objects) Command 2-122
MNTHOSTF (Sequel Host File Maintenance) Command 2-124
OPNSQLF (Open Sequel File) Command . 2-125
OUTFILE (Execute an SQL View) Command 2-130
PRINT (Print Sequel Data) Command . 2-131
PRTAUDDTA (Print Audit Data) Command . 2-135
PRTAUDDTL (Print Audit Detail) Command 2-137
PRTAUDFIL (Print Audited File Usage) Command 2-138
PRTAUDPTH (Print Audited Access Paths) Command 2-139
PRTRPTD (Print Report Description) Command 2-140
PRTSEQUEL (Print Sequel Objects) Command 2-141
REPORT (Run A Sequel Report) Command 2-142
REPORTVPT (Run a ViewPoint Report Object) Command 2-148
RGZDCT (Reorganize Sequel Authority Dictionary) Command 2-149
RSMRPTDSN (Resume Report Design) Command 2-150
RTVRPTD (Retrieve Report Description) Command 2-152
RTVRPTSQL (Retrieve Report SQL) Command 2-155
RTVTBLD (Retrieve Table Description) Command 2-157
RTVTBLSQL (Retrieve Table SQL) Command 2-159
RTVVIEWD (Retrieve View Description) Command 2-161
RUNCMD (Run Commands Using Sequel Selection) Command . . . 2-164

RUNCMDVPT (Run a Command Over All Records) Command 2-167
RUNSCRIPT (Run Script) Command . 2-168
RUNSCRVPT (Run a VPT Script Object) Command 2-170
SCHSCRIPT (Search Script) Command . 2-171
SCRETURN (Return Script View) Command 2-173
SEQSETJVAE (Set Sequel Java Environment) Command 2-176
SETAUDDFT (Set Audit Default) Command 2-177
SETDFT (Set Sequel Defaults) Command . 2-178

Contents vii

SETJDEOWA (Set Oracle JDE OneWorld / EnterpriseOne
Attributes) Command . 2-180
SQDATE (Add/Remove SQDATE data) Command 2-183
SQJCRO (Run CRO Report) Command . 2-186
SQJSTRSVR (Start Sequel JAVA Server) Command 2-189
SQLCLOSE (Sequel Close Connection) Command 2-190
SQLCONNECT (Sequel Connect) Command 2-190
SQLLICLCK (Sequel License Locks) Command 2-191
SQVER (Sequel Version) Command . 2-192
STMFVARSUB (Stream File Variable Substitution) Command 2-193
TABLE (Execute To A File) Command . 2-194
UPDATE (Update Records In A File) Command 2-204
UPDRMTCMD (Update Remote Command) Command 2-208
VFYREPO (Verify Repository) Command . 2-210
VPTRMTCMD (Viewpoint Remote Command) Command 2-212
WRKAUDDTA (Work With Audit Data) Command 2-213
WRKAUDQRY (Work With Audit Data Query) Command 2-214
WRKDCTOBJ (Work With Sequel Authority by Object 2-215
WRKDCTUSR (Work With Sequel Authority by User) Command . . . 2-216
WRKPCFMT (Work With PC Formats) Command 2-217
WRKREPORT (Work With Reports) Command 2-220
WRKSEQUEL (Work With Sequel Objects) Command 2-221
WRKSCRIPT (Work With Scripts) Command 2-223
WRKVIEW (Work With Views) Command . 2-224

Sequel Security . 3-1
Enabling Sequel Security . 3-3
Setting up the Authority Dictionary . 3-5

Work With Sequel Authority By User . 3-5
Work With Sequel Authority By Object . 3-11

Printing the Authority Dictionary . 3-19
List Authority Dictionary By User (LSTDCTUSR) Command 3-19
List Authority Dictionary By Object (LSTDCTOBJ) Command 3-20

Reorganizing the Authority Dictionary . 3-21
Customizing Sequel Security . 3-22

Sequel Programming . 4-1
Simple View and Report Execution . 4-3
Variable Views . 4-4

ORDERSUMP Example . 4-11
Runtime Prompt API . 4-15

Program Created Statements and Views . 4-17
Creating Sequel Statements Using String Concatenation 4-17

viii Sequel 11 Programmer’s Guide - Contents

Using Existing Views as a Starting Point . 4-18
Execution Time Report Specification . 4-21
Submitting Requests . 4-22

Restricting Sequel Requests to the Batch Environment 4-22
Submitting Variable Views . 4-23

Processing Query Data with HLL Programs . 4-24
Data Modification . 5-1

Commitment Control . 5-2
Deleting Records . 5-5
Changing Records . 5-8
Creating Records . 5-11

Performance . 6-1
Classic Query vs. SQL Query Engine . 6-1
Index Creation . 6-2
Processor Usage . 6-3
Execution Time . 6-4

Sequel Objects . 7-1
SQLEXEC Output File . 7-1
SQLEXEC User Space . 7-1
Distribution of Sequel Output . 7-2
Programs with USRPRF(*OWNER) . 7-3
SQLRQS Message Queue . 7-5
Menu Driver Files . 7-6

Appendix . A-1
Dynamic SQL/400 Access/400 Access (DYNSQL) A-1

DYNSQL Objects . A-1
Using DYNSQL . A-2
DYNSQL Restrictions . A-3
SQL/400 Statements Supported By DYNSQL A-4
Examples . A-8

Index . I-1

Introduction 1-1

Introduction

Sequel from Sequel Software, a HelpSystemcompanys, provides information retrieval, report
writing, and decision support for Power Systems running IBM i (System i, iSeries, and AS/400
systems). From simple ad hoc queries to executive dashboards to providing information on the
Web, Sequel delivers System i data in the format that works best for you. Without exception,
Sequel is the fastest and easiest way to access your System i data.

Sequel can obtain information from any database files that have been defined on your system
using:

• Data description specifications (DDS)
• Interactive data definition utility (IDDU)
• Structured Query Language (SQL/400)
The files can exist on your local system or on a remote System i, or on any other remote system
that supports DDM, CLI or JDBC access. A partial list of such systems includes DB2, Microsoft
SQLServer, Oracle and MySQL. Any database that supports a type 2 JDBC driver is supported.

Sequel lets you create your own view of the information you want to use, and then run the view
in order to see the information on the display, send it to the printer, or store it in another data file
for later use. You can also route Sequel output to a shared folder document so that it can be
accessed from a personal computer using IBM iSeries Access.

You can also use Sequel to create customized reports and tables that are formatted to your exact
specifications. Complex reports can be created using Sequel's report writing tools. In fact,
Sequel can completely eliminate the need for most report programs! Sequel tables let you sum-
marize and categorize date quickly.

You can use Sequel to obtain information from a single file or a combined set of up to 32 files.
You can select all the fields, or a few of the fields and organize them as you want them to appear.
You can have all of the records in the file(s) included in your view or you can select only a few.

Sequel lets you use Structured Query Language (SQL) to create the views used in retrieving and
formatting information. SQL is an internationally recognized standard language for manipulat-
ing data. It is in use in mainframe and micro computer applications throughout the world. It is
also available on the System i as a programming product from IBM.

Sequel makes it possible for anyone familiar with the SQL language to work with database
information, and helps teach SQL to those who are unfamiliar with it.

All Sequel features can be accessed through the IBM i command interface. Anyone with access
to a command entry line can use them simply by using the appropriate Sequel command. Users
who do not have command entry privileges can still access Sequel using the menu. Because
Sequel is command driven, it is easy to restrict authority to one or more Sequel functions. Sim-
ply removing authority to the underlying Sequel command(s) prevents users from accessing the
corresponding function.

1-2 Sequel 11 Programmer’s Guide - Introduction

Components of Sequel

Sequel consists of several components. These modules work together to supply the complete set
of functions that Sequel provides.

Kernel

The heart of the system is the Sequel kernel. It supplies the commands that:

• Create, change, and document Sequel views
• Retrieve data through a view and route it to the workstation, printer, database file, or PC

document
• Change data by updating, deleting, and inserting records through a view
• Support Sequel's runtime prompting and drill-down capabilities
• Organize views and reports so you can use them easily through "work with" displays and

menus
• Create, edit, and run Sequel scripts
If the retrieved information is presented at the workstation, the Sequel data display lets you:

Create multiple side-by-side windows on your display
Scroll sequentially through the information
Position vertically (by column) and horizontally (by row)
Position horizontally by key
Run additional views or commands that use data values on the display

The basic Sequel printouts are simply listings of the information in your view. You specify the
paper width (in columns) and length (in lines) and Sequel places the data onto the output queue
for printing. If the view width exceeds the page width, Sequel will print on up to eight pages so
the reports can be placed side by side and form a complete picture of the data. This technique
allows up to 1,584 columns (198 x 8) of data to be printed in an easy to interpret fashion.

View Editor

The Sequel user interface provides an interactive view editor that lets you create and run
requests. It will assist people who do not know the SQL syntax or are unfamiliar with the data-
base. It can also provide a procedural, step-by-step approach to view design and execution.

The user interface can be tailored to your capabilities by choosing an assistance level that best
meets your needs. Each Sequel user can choose one of three levels (basic, intermediate,
advanced) that will determine the level of automatic prompting and advanced function that is
available while using the user interface.

Sequel's view editor can provide a series of displays to guide you through all parts of the SQL
statement to the successful creation of even complicated queries. Extensive on-line help is avail-
able from each display. It helps reduce confusion and makes the program even easier to use.

Introduction 1-3

The user interface is designed so that virtually everyone who has access to the system can get the
information they need through Sequel.

At the same time, the user interface teaches the fundamentals of the SQL language. It helps users
to gain more knowledge of SQL and become familiar with the system. As they gain experience
and need less assistance, the software allows them to be more and more independent - providing
help only when requested.

Advanced users will appreciate the fact that the user interface does not force them to work at the
slower pace of a beginner. Sequel offers a fast path prompter, assisting only when requested, and
a full screen view editor, complete with advanced cut and paste features!

Report Writer

The Sequel report writing module gives you the ability to design and create printed reports that
are formatted exactly the way you want them.

Standard printouts provided by the kernel functions will be sufficient for a wide variety of appli-
cations. More complex output requires the extra capability of the report writer. Simple reports
like mailing labels or complex ones like order acknowledgements or invoices are equally easy to
create.

Using the report writer, you can define:

• Exact placement of each item on your report
• Spacing and skipping of the output lines
• Subtotal and total breaks
• Conditional calculations that assign results based on view data or report results
• Tabling of data through a combination of conditional and assignment statements
The report writing module consists of two parts. The interactive report design tool lets you cre-
ate and change report definitions. You create the report layout by "painting" it onto the display.
Calculations and conditional statements are entered using a line oriented editor.

The second part of the report writer consists of the REPORT command and the programs needed
to run it. Your output will be created and placed onto an output queue so that it may be printed.

Tabling

The Sequel tabling module helps you capture the "big picture" stored in your database. It lets
you summarize and tabulate large amounts of data into a few rows and columns of useful infor-
mation. There are three primary reasons to use the tabling functions instead of the report writing
capabilities:

specifying a table definition is easier,
output can be routed to a display, or a database file or folder document
creation of the result is faster

Tabling views are created using an interactive table editor. Its displays let you create, change,
and view your table definition. You define and change the table using a combination of direct

1-4 Sequel 11 Programmer’s Guide - Introduction

entry and action bar, pull-down, and pop-up window functions. Like the view editor, the table
editor lets you run the table and route its results to the display, a printout, a System i file, or a
folder document.

Auditor

The Sequel auditing module lets you monitor the Sequel activity on your system. It answers
questions about who is using it, when requests are being run, how much of the computer's
resources are used, etc. Using the auditor's inquiry and analysis tools, you can effectively man-
age your query environment.

The auditing module includes these basic functions:

Data collection - each Sequel request is monitored in order to acquire CPU time, database
activity, access path creation, and other information. The information is stored in a journal
receiver until it is processed during the distribution step.

Data distribution - once the information is collected in the receiver it can be distributed to
the files in the audit database. This function can run unattended and can be executed auto-
matically by a job scheduler.

Data analysis - Once the information has been distributed to the audit database, the inquiry
and reporting programs can be run. They provide several levels of summary information as
well as complete details for every query that has been audited. Some Sequel views and
reports are also included to help you analyze the audited information.

ViewPoint

ViewPoint is a separate component that provides a Microsoft Windows interface to most Sequel-
Showcase functions. With it, you can use a "Work with Sequel Objects" type of window to run
views (static, prompted, and tabling) and display results in a PC window, store them as local
files or System i files, or send as an E-mail attachment. You can also submit report and execution
requests to the System i for batch execution.

ViewPoint also provides drill-down and graph drawing facilities for advanced EIS or data ware-
housing/mining applications.

Introduction 1-5

Features of Sequel

Standard Data Access

The strength of Sequel lies in its method of working with information in your database. Sequel
lets you use Structured Query Language (SQL) to access information. SQL is known for its sim-
plicity and powerful ability to provide answers to even the most complex data questions. It is an
internationally recognized standard and is widely used in both mainframe and microcomputer
applications. Users of SQL products such as DB2, INGRES, ORACLE or SQL/400 will find
that they already know how to use Sequel even if they are not familiar with the System i envi-
ronment!

Standard SQL access means that once users become familiar with Sequel and learn the "lan-
guage" of SQL, migration to other computers or operating environments of the future, or net-
working with other SQL based systems requires little additional skill. Someone familiar with
Sequel will be able to use SQL regardless of the host computer that runs the data management
software.

Standard data access means that all Sequel functions share the same format. All information
requests are structured using a common mechanism regardless of the output direction. Sequel
information can be directed to a display, report, data file, or distant computer. Retrieving, chang-
ing, creating, and deleting data can all be accomplished using commands which are very similar
to each other.

Ease of Use

Apart from the fact that SQL lends consistency in accessing the database, it is easy to learn and
use. Most operations are built around a single statement, known as the query. The query state-
ment indicates what information is to be accessed and where it resides within the system. Once
this statement is mastered, all functions in Sequel will be available and obvious to its users. Most
programmers can expect to understand and use Sequel in less than an hour of study. Those less
familiar with the System i will usually take somewhat longer.

Because Sequel is easy to use, it is perfect for answering ad hoc requests for information. When
departmental users or programmers need information from the database, SequelShowcase can be
called upon to get it and deliver it to them quickly. Requests can be refined until the desired
information has been retrieved. Interactive "information gathering" sessions involving several
Sequel requests in rapid succession can yield a wealth of data that would be impractical to
acquire using normal programming methods.

The user interface enhances the simplicity of SQL by providing an easy mechanism for Sequel-
Showcase users to determine library, file, and field names. It will also help those unfamiliar with
SQL to learn the language while providing a “fast path" for more advanced users. View modifi-
cation is especially easy with the user interface. Each time a query is completed, the interface
presents the SQL statement to the user so minor changes can be made prior to another execution.

The Sequel advanced report design system makes it especially easy to create custom reports.
Full screen entry and display allow users to design reports meeting specific requirements -
forms, skipping and spacing, subtotaling, etc. Many applications requiring high level language
programs can be replaced by combining Sequel views with custom reports.

1-6 Sequel 11 Programmer’s Guide - Introduction

Fast and Efficient

Sequel makes good use of computer resources. Data manipulation is usually as efficient and fre-
quently faster than equivalent "custom programmed" solutions. Sequel takes advantage of low
level data support functions provided by the internal microcode of the computer system. The
result is that data retrieval is accomplished in the most efficient manner, delivering results to the
user with minimal delays.

Sequel requests can be executed in either a batch or interactive environment. This means that the
workstation does not need to be occupied for long running data requests. When requests are sub-
mitted to the batch subsystem, data access can occur without impacting other interactive users.

Power and Flexibility

Sequel allows users to specify what is to be accomplished rather than how it is to be done. You
are not constrained to making your requests in a rigid, pre-specified fashion. By focusing more
on content and less on form, Sequel allows you to express ideas and requirements more easily
than before. This flexibility pays dividends by giving you the ability to specify problems and
solutions in their own terms, rather than forcing them to "fit the mold" required by other soft-
ware systems.

All data manipulations done with Sequel use the SQL language. Because SQL is a complete data
manipulation language, it is considerably more powerful than a simple rule-based, or display
driven system. As with spoken languages, the limit of what you can accomplish with Sequel is
defined more by your insight and imagination than by the SQL language itself. If presented with
an accurate and complete description of the database, you will be able to answer virtually any
question that can arise about the data contained in it!

Programmability

Perhaps the most significant aspect of the Sequel system is that it can be accessed through the
normal command interface. This offers great advantages to the programmer.

The primary benefit of command level access is that Sequel requests can be easily integrated
into Sequel scripts or programs written in CL, RPG, COBOL or other high level languages. Not
all requests can be specified ahead of time. Applications frequently need to prompt the user for
information (dates, search criteria, etc.) at execution time. Because SequelShowcase is com-
mand driven, programs can create Sequel requests that contain variable information. By using
runtime variables or by embedding requests into a CL program for example, each execution of
the program can return different results, tailored to the user's needs at that particular point in
time.

In addition, Sequel can be used to relieve programs (and programmers) from the tedium of
acquiring the exact set of data required for processing. Complex processes can be designed and
executed within programs that use Sequel to access data rather than performing the laborious
task of accessing the data directly. This results in simpler programs that take less time to create,
test, and maintain.

Introduction 1-7

Sequel Objects

Using Sequel, you create views, reports, scripts, and tables which are used in retrieving and for-
matting the information you need. All Sequel definitions are stored as System i user space
(*USRSPC) objects.

Sequel Views

Sequel views can be used to retrieve, remove, create and change information in the database.
Each of these activities involves the SQL query statement, also called the Select statement. The
query statement allows you to calculate, order, group, choose and otherwise arrange data that
exists within your database. The SQL query creates a new view of the underlying information.

The view does not contain information in the way that physical files do, but is merely a logical
or "pretend" representation of it. Like a file, the view can be thought of as a two dimensional
table. It has horizontal rows (records) and vertical columns (fields). All the rows have the same
number of columns and each column name must be unique. Views can contain either detail or
summary level information but do not include subtotals. In order to see summarized information
along with detail records, you will need to use the Sequel report writer.

A Sequel view may also include definitions for one or more variables. If it does, Sequel will
require additional information to be supplied when the view is run. If not included with the exe-
cution request, Sequel will automatically present a prompt display that allows the user to specify
the required information.

View data can be displayed, printed, or routed to an output file. Many views are update-able -
that is, the information they represent can be added to, changed and deleted. In addition Sequel-
Showcase makes it possible for programmers to treat a view like a file and process it with their
own programs.

During processing, Sequel analyzes your SQL statement and creates a view from it. The view
can be saved or discarded as the situation dictates. If it is to be saved, you specify its name and
library. If the view does not include runtime variables, it is created with an attribute of
SQLVIEW. If it includes one or more runtime variables, the attribute is SQLVIEWP.

Ad hoc requests cause Sequel to create a temporary view in the QTEMP library. Named
SQLEXEC, it exists for the duration of the Sequel request. It is automatically deleted when the
retrieval is completed.

SQL requests that are likely to be repeated and used in the future can be created once, stored as a
permanent view in a user library, and run when appropriate. Using a "pre-created" view in a
Sequel request is as simple as specifying its name on the Sequel command.

When a permanent view is required, the Sequel Create View (CRTVIEW) command is used to
create it. All system commands will work correctly with a Sequel view. Views can be moved,
renamed, saved, restored, and deleted with the same commands that would be used with any
"normal" object. If the view is deleted, all record of the view is deleted and it will cease to exist.
Sequel does not keep an extra data dictionary or a catalog of the views you have created.

Standard system object authority governs which users may use the view and how they may use
it. Using a view requires operational rights to the user space object. Management authority is

1-8 Sequel 11 Programmer’s Guide - Introduction

required to move, rename, save and restore the view. It cannot be deleted or changed without
existence rights.

In addition to having authority to use the view, a user must have proper authority to the underly-
ing data files before the view can be used. Operational rights are required for each file listed in
the view definition. The proper data rights (read, update, add, or delete) must also be available
from the underlying physical file(s) to perform the requested Sequel function.

Sequel Reports

The Sequel report contains special formatting and calculating instructions that produce more
complex output than can be obtained using a view alone. When it is run, the report uses an
underlying view for the information that will be printed.

Reports are created using the Design Report (DSNREPORT) command. Like views, once a
report is created you can run it as many times as you want. Reports can be run by using the Work
With Reports (WRKREPORT) display. They can also be run directly from a command entry dis-
play using the REPORT command.

Sequel also stores report definitions in user space objects. These have an object attribute of
SQLRPT. During report design, you indicate the view (or SQL statement) your report will use to
acquire information and how it will be formatted. When you have finished, you name the Sequel
report and indicate the library where you want it saved.

As with their view counterparts, the authority to use Sequel reports is controlled by the operating
system. Operational authority to the report object is required to run it, management rights are
required in order to move it, and existence rights are required to change or delete it.

Sequel Scripts

The Sequel scripts provide a tool for creating an organized process that can run at any time to
perform any series of functions. The functions to be performed by the script are specified by
entering the required commands into the script and using runtime variables to supply command
Parameter with user input supplied each time the script is run

Scripts are created using the Design Script (DSNSCRIPT) command which provides an interac-
tive script editor or the Create Script (CRTSCRIPT) command. CL source can be imported into a
script. Scripts can be run by using the Work With Script (WRKSCRIPT) display or Work With
Sequel Objects (WRKSEQUEL) display. They can also be run directly from a command entry
display using the RUNSCRIPT command.

Sequel stores script definitions in user space objects. These have an object attribute of
SQLSCRIPT.

Script definitions can be documented through the Display Script Definition (DSPSCRIPTD)
command. It allows you to send information about the table to the display, printer, or an output
file.

Like views and report, the authority to use Sequel scripts is controlled by the operating system.
To run a script, users must have operational authority to the script object. To move, rename or
use save/restore operations requires management rights. Existence rights are required to change
or delete it.

Introduction 1-9

Sequel Tabling Views

Tabling views describe summary and tabulating functions that rearrange database information
into another form. Like Sequel reports, tabling views use an SQL statement or a "regular" view
to get records from the database. As the records are retrieved, they are summarized according to
the table definition.

Tabling views are similar to "regular" views in that their results can be sent to the display,
printer, a database file, or a PC folder. They can also be used as the underlying data source for
Sequel reports and charts.

Tables are created using the Design Table (DSNTABLE) command. Tables can be run by using
the Work With View (WRKVIEW) or Work With Sequel Objects (WRKSEQUEL) display.
They can also be run directly from a command entry display using the TABLE command or any
of the "regular" view execution commands (DISPLAY, PRINT, EXECUTE).

Sequel table definitions have an object attribute of SQLTABLE. During design, you indicate the
view (or SQL statement) your table will use to acquire information. When you save the table,
you name the Sequel table object and the library where your definition will be saved.

Table definitions can be documented through the Display Table Definition (DSPVIEWD) com-
mand. It allows you to send information about the table to the display, printer, or an output file.
The output file lets you cross-reference the views used by the table and can be loaded into the
ABSTRACT/PROBE PLUS documentation system.

Like views and reports, the authority to use Sequel tables is controlled by the operating system.
To run a table users must have operational authority to the table object and its underlying view.
To move, rename, or use save/restore operations requires management rights. Existence rights
are required to change or delete it.

1-10 Sequel 11 Programmer’s Guide - Introduction

Contact Fortra

Please contact Fortra for questions or to receive information about Abstract for RDi. You can
contact us to receive technical bulletins, updates, program fixes, and other information via elec-
tronic mail, Internet, or fax.

Fortra Portal

For additional resources, or to contact Technical Support, visit the Fortra Community Portal at
https://community.fortra.com.
For support issues, please provide the following:
• Check this guide's table of contents and index for information that addresses your concern.
• Gather and organize as much information as possible about the problem including job/error

logs, screen shots or anything else to document the issue.

Command Reference 2-1

Command Reference

Sequel is command driven. The standard OS/400 command interface invokes all of its functions.
Though interactive interfaces are available, they are not required in order to create, change, run,
or manipulate Sequel views, reports and scripts. As a result, Sequel has unique advantages over
alternative systems.

All Sequel commands can be prompted and entered from a command line. You can run them
from any command entry display or request processing menu. This means that you’re able to
create, change, run, and manipulate Sequel objects without interrupting your current environ-
ment or beginning a separate session. Although Sequel’s interactive inter faces offer a conve-
nient way to work with views and reports, you are not forced to use them. You decide the way
that you want to use Sequel.

You can create your own programs that make Sequel requests. Because they are commands,
Sequel functions can be included in CL programs. They can also be run from high level lan-
guage programs (RPG, COBOL, etc.) through a call to QCMDEXC or QCAEXEC1. Your pro-
grams can respond to users’ input by creating and running views and reports. You can leverage
your ability to create exactly the programs you need with Sequel’s data retrieval, modification,
and reporting capabilities. You can create an application in a fraction of the time previously
required.

Normal system object authority governs each user’s access to Sequel commands. Operational
rights (*OBJOPR) are required to run any command. By revoking authority to the appropriate
Sequel commands, you can restrict some functions without affecting others.

To make this possible, separate commands create and change the view and report definitions,
control output, and modify data. This section provides detailed information for each Sequel-
Showcase command.

The Sequel commands are presented alphabetically but can be divided into broad functional cat-
egories:

Kernel Commands
Create and change Sequel views or scripts

CHGVIEW Change view (page 2-19)

CRTSCRIPT Create Sequel Script definition (page 2-32)

CRTVIEW Create view (page 2-37)

CVTVIEW Convert view(s) to the current format (page 2-56)

DSNSCRIPT Design Sequel Script Definition (page 2-73)

1. QCMDEXEC and QCAEXEC programs are provided by the operating system to run commands from a HLL program. Refer to the CL Pro-
grammer’s Guide for additional information.

2-2 Sequel 11 Programmer’s Guide - Command Reference

Document the Sequel object definitions

DSPRPTD Display report description (page 2-84)

DSPTBLD Display table description (page 2-93)

DSPSCRIPTD Display Sequel script definition (page 2-89)

DSPVIEWD Display view description (page 2-97)

PRTRPTD Print report description (page 2-140)

RTVRPTD Retrieve report description (page 2-152)

RTVRPTSQL Retrieve SQL statement from a report description (page 2-155)

RTVTBLD Retrieve properties of the table definition and store them in CL program
variables (page 2-157)

RTVTBLSQL Retrieve SQL statement from a table description (page 2-159)

RTVSCRIPTD Retrieve Script Definition

RTVVIEWD Retrieve view description (page 2-161)

Work with views, reports, and scripts

PRTSEQUEL Print a list of Sequel objects (page 2-141)

WRKREPORT Work with reports (page 2-220)

WRKVIEW Work with views (page 2-224)

WRKSEQUEL Work with Sequel objects (page 2-221)

WRKSCRIPT Work with Scripts (page 2-223)

Information retrieval

BCHEXECUTE Submit an EXECUTE request to a batch subsystem. If a runtime view is
used, prompt it prior to submitting it (page 2-8)

BCHPRINT Submit a PRINT request to a batch subsystem. If a runtime view is
used, prompt it prior to submitting it. (page 2-9)

BCHSCRIPT Run a Sequel script in batch (page 2-11)

DISPLAY Display information using a view at the workstation (page 2-63)

EXECUTE Run a view and place information into an output file, PC document or
send to an e-mail or FTP recipient. (page 2-102)

OPNSQLF Create an open data path for use by a HLL program (page 2-125)

OUTFILE Run a view and place information into an output file in the library spec-
ified in the user defaults (page 2-130)

Command Reference 2-3

PRINT Direct output from a view to spooled file(s) for printing (page 2-131)

RUNSCRIPT Run a Sequel script interactively (page 2-168)

Data modification

DELETE Delete records identified by a view (page 2-59)

INSERT Add one or more records to a file using a view (page 2-114)

UPDATE Change column values for a set of records (page 2-204)

Control and administrative functions

GO SEQUEL Present the Sequel main menu

SETDFT Set Sequel interface defaults (page 2-178)

SQVER Determine Sequel Version (page 2-192)

WRKPCFMT Modify and create PC formats (page 2-217)

User Interface Command
DSNVIEW Design a view interactively (page 2-78)

Report Writer Commands
BCHREPORT Submit a REPORT request to a batch subsystem. If a runtime view is

used, prompt it prior to submitting it. (page 2-10)

CHGRPTD Change a report description (page 2-25)

CVTRPT Convert report(s) to the current format (page 2-52)

DSNREPORT Design a report (page 2-69)

REPORT Run a report (page 2-142)

RSMRPTDSN Resume report design (page 2-150)

RTVRPTSQL Retrieve SQL statement from a report description (page 2-155)

Tabling Commands
CHGTBLD Change table description (page 2-28)

DSNTABLE Design a tabling view (page 2-76)

DSPTBLD Display table description (page 2-93)

2-4 Sequel 11 Programmer’s Guide - Command Reference

RTVTBLD Retrieve properties of the table definition and store them in CL program
variables (page 2-157)

RTVTBLSQL Retrieve SQL statement from a table description (page 2-155)

TABLE Tabulate results and place them in a database file or folder (page 2-194)

Scripting Commands
BCHSCRIPT Submit a RUNSCRIPT request to a batch subsystem. If a runtime script

is used, prompt it prior to submitting. (page 2-11)

CRTSCRIPT Create a script from a command prompt (page 2-32)

DSNSCRIPT Design a script using the script editor (page 2-73)

DSPSCRIPTD Display script definition (page 2-89)

RUNAPP Run a Sequel Drill-down Application

RUNSCRIPT Run a Sequel script (page 2-168)

SCRETURN Use in a script view to return a final result sate (page 2-173)

VPTRMTCMD Use in a script process Client Table and Client Report output from
Sequel Web Interface. (page 212)

SQJCRO Use in a script to process Client Report output from (page 186)

Conversion
CVTPDMFSQL Convert PDM option file to Sequel option file (page 2-48)

CVTQRY Convert AS/400 queries (*QRYDFN, *QMQRY and *QMFORM) to
Sequel views and/or reports. (page 2-49)

CVTRPT Convert report to a new format (page 2-52)

CVTVIEW Convert view to a new format (page 2-56)

MGRSQLOBJ Migrate Sequel data area objects to Sequel user space objects. (page 2-
122)

UPDRMTCMD Convert scripts that use the RUNRMTCMD to use VPTRMTCMD.

J.D. Edwards Assistance
BLDJDELF Build view from JDE definition (page 2-12)

DYNSQL Run dynamic SQL/400 statement (page A-2)

Command Reference 2-5

Miscellaneous Tools
BLDOPTF Build option file definitions for drill down. (page 2-15)

CFGQRYC04 Define message handling when using the REPORT command.
(page 2-17)

CHKIFSLOCK Checks for locks on the sqeuelcc.jar file (page 2-29)

RUNCMD A list processor that runs commands using a Sequel a statement or view
to generate the list. (page 2-164)

SQJSTRSVR Starts the Sequel Java Server (page 2-189)

SQLLICLCK Displays jobs holding Sequel licenses (page 2-191)

VFYREPO Verify the integrity of host objects and corresponding repository
objects. (page 210)

VPTRMTCMD Alternative to the RUNRMTCMD used in Viewpoint scripts to direct
Client Report and Client Table output from Sequel Web Interface
(page 2-212)

Exclusion/Inclusion Dictionary
LSTDCTOBJ Print a list of authority exclusions or inclusions by object (page 2-120)

LSTDCTUSR Print a list of authority exclusions or inclusions by user (page 2-121)

RGZDCT Reorganize dictionary (page 2-149)

WRKDCTOBJ Work with authority exclusions or inclusions by object (page 2-215)

WRKDCTUSR Work with authority exclusions or inclusions by user (page 2-216)

Auditing Commands
Audit management and control

ANZAUDDTA Analyze audit data and store in the database (page 2-7)

DLTAUDDTA Delete audit data from the database (page 2-66)

SETAUDDFT Set audit switch for Sequel users (page 2-177)

Audit data inquiry

GPHAUDSUM Graph summarized audit data (page 2-113)

WRKAUDDTA Work with the audit data by user, job, or object (page 2-213)

WRKAUDQRY Work with the audit data using your own query (page 2-214)

Audit data reports

2-6 Sequel 11 Programmer’s Guide - Command Reference

PRTAUDDTA Print audit data (page 2-135)

PRTAUDDTL Print details of audited requests (page 2-137)

PRTAUDFIL Print audited file usage report (page 2-138)

PRTAUDPTH Print audited access path information (page 2-139)

ANZAUDDTA (Analyze Audit Data) Command 2-7

ANZAUDDTA (Analyze Audit Data) Command

This command retrieves the entries from the audit journal receiver and distributes them among
the audit database files. It can be run interactively or in a batch environment. You can run the
ANZAUDDTA command by:

• using option 1 from the audit menu. A batch job will be submitted using the SBMJOB com-
mand defaults and your default job description.

• entering or submitting the ANZAUDDTA command from a command entry line
The command has no parameters.

When the command completes, a new, "empty" receiver will be attached to the journal and col-
lect the audit data. The audit database will contain all the data from the old receiver. The previ-
ous receiver is deleted during processing.

To complete successfully, the user performing the ANZAUDDTA command must have manage-
ment authority (*CHANGE) to the audit journal SQAUDIT, existence rights (*ALL) to all
receivers currently attached to the journal, and object insertion (*CHANGE) rights to the
SEQUEL library.

The ANZAUDDTA command automatically runs under commitment control. Whether submit-
ted to a batch subsystem or run interactively, commitment control is started when the process
begins. All changes to the audit files are committed when the distribution step completes. If
ANZAUDDTA is canceled or ends abnormally before completing successfully, it can be
restarted without losing or duplicating any audit information. You can restart the command sim-
ply by re executing it.

2-8 Sequel 11 Programmer’s Guide - Command Reference

BCHEXECUTE (Submit Execute To Batch) Command

The BCHEXECUTE command is a modified version of the EXECUTE command. It should be
used instead of the EXECUTE command when you want to ensure that your users cannot run
reports interactively. Refer to page 4-22 (Submitting Requests) for a complete description of a
process for restricting operations to batch only execution.

The BCHEXECUTE command will submit an EXECUTE request to the batch subsystem using
the Parameter values entered on the command and also the job description and job queue named
by the user’s default data area. (Refer to the SETDFT command on page 2-178)

If the request uses a runtime view, the interactive prompt will appear before the request is sub-
mitted. Although they will be able to submit the request through F14/F15, users will not be able
to run the view interactively (using F9=Run).

The syntax for the BCHEXECUTE command is similar to the syntax for the EXECUTE com-
mand. One additional Parameter has been added. The PMPSBM Parameter allows you to choose
whether the OS/400 command prompt for the submit job (SBMJOB) command should appear
before the job is submitted for execution. Use *YES to indicate that the prompt should appear;
specify *NO (the default) to submit the request without presenting the SBMJOB prompt first.

Refer to the description of the EXECUTE command beginning on page 2-102 for complete
information about the other BCHEXECUTE Parameters.

BCHPRINT (Submit Print To Batch) Command 2-9

BCHPRINT (Submit Print To Batch) Command

The BCHPRINT command is a modified version of the PRINT command. It should be used
instead of the PRINT command when you want to ensure that your users cannot run reports
interactively. Refer to page 4-22 (Submitting Requests) for a complete description of a process
for restricting operations to batch only execution.

The BCHPRINT command will submit a PRINT request to the batch subsystem using the
Parameter values entered on the command and also the job description and job queue named by
the user’s default data area. (Refer to the SETDFT command on page 2-178)

If the request uses a runtime view, the interactive prompt will appear before the request is sub-
mitted. Although they will be able to submit the request through F14/F15, users will not be able
to run the view interactively (using F9=Run).

The syntax for the BCHPRINT command is similar to the syntax for the PRINT command. One
additional Parameter has been added. The PMPSBM Parameter allows you to choose whether
the OS/400 command prompt for the submit job (SBMJOB) command should appear before the
job is submitted for execution. Use *YES to indicate that the prompt should appear; specify
*NO (the default) to submit the request without presenting the SBMJOB prompt first.

Refer to the description of the PRINT command beginning on page 2-131 for complete informa-
tion about the other BCHPRINT Parameters.

2-10 Sequel 11 Programmer’s Guide - Command Reference

BCHREPORT (Submit A Sequel Report) Command

The BCHREPORT command is a modified version of the REPORT command. It should be used
instead of the REPORT command when you want to ensure that your users cannot run reports
interactively. Refer to page 4-22 (Submitting Requests) for a complete description of a process
for restricting reports to batch only execution.

The BCHREPORT command will submit an REPORT request to the batch subsystem using the
Parameter values entered on the command and also the job description and job queue named by
the user’s default data area. (Refer to the SETDFT command on page 2-178)

If the request uses a runtime view, the interactive prompt will appear before the request is sub-
mitted. Although they will be able to submit the request through F14/F15, users will not be able
to run the report interactively (using F9=Run).

The syntax for the BCHREPORT command is similar to the syntax for the REPORT command.
One additional Parameter has been added. The PMPSBM Parameter allows you to choose
whether the OS/400 command prompt for the submit job (SBMJOB) command should appear
before the job is submitted for execution. Use *YES to indicate that the prompt should appear;
specify *NO (the default) to submit the request without presenting the SBMJOB prompt first.

Refer to the description of the REPORT command beginning on page 2-142 for complete infor-
mation about the other BCHREPORT Parameters.

BCHSCRIPT (Submit A Sequel Script) Command 2-11

BCHSCRIPT (Submit A Sequel Script) Command

The BCHSCRIPT command is a modified version of the RUNSCRIPT command. It should be
used instead of the RUNSCRIPT command when you want to ensure that your users cannot run
reports interactively. Refer to page 4-22 (Submitting Requests) for a complete description of a
process for restricting scripts to batch only execution.

The BCHSCRIPT command will submit a RUNSCRIPT request to the batch subsystem using
the Parameter values entered on the command and also the job description and job queue named
by the user’s default data area. (Refer to the SETDFT command on page 2-178)

If the request uses a runtime variables, the interactive prompt will appear before the request is
submitted. Although they will be able to submit the request through F14/F15, users will not be
able to run the script interactively (using F9=Run).

The syntax for the BCHSCRIPT command is similar to the syntax for the RUNSCRIPT com-
mand. One additional Parameter has been added. The PMPSBM Parameter allows you to choose
whether the OS/400 command prompt for the submit job (SBMJOB) command should appear
before the job is submitted for execution. Use *YES to indicate that the prompt should appear;
specify *NO (the default) to submit the request without presenting the SBMJOB prompt first.

Refer to the description of the RUNSCRIPT command beginning on page 2-168 for complete
information about the other BCHSCRIPT Parameters.

2-12 Sequel 11 Programmer’s Guide - Command Reference

BLDJDELF (Build view from JDE definition) Command

The Build View from JDE definition (BLDJDELF) command runs a procedure that will greatly
simplify the process of building views and Queries over J.D. Edwards application database files.
With BLDJDELF you can specify the number of decimal positions for fields, useful field text for
data fields, and convert Julian dates into a more use format.

The BLDJDELF command will create a new logical file for any JDE physical file. The new log-
ical file incorporates the proper field attributes as defined in the data dictionary and useful field
text. The internal command, DYNSQLF, is used to generate SQL source code to build the logi-
cal file.

JDEFILE Parameter

Specifies the name of the JDE database file(s) on which a view is to be created. This is a
required Parameter. You must have *USE authority to each file that is selected and the database
library containing the dictionary must be on your library list to run the command successfully.

File Name:
*ALL: All files in the selected library are chosen.

Generic*: Files meeting the generic criteria are chosen. Enter the beginning portion of the
object name and append an asterisk.

File-name: Specific file name.

Library Name:
*LIBL: The current job library list will be searched for the file(s).

*USRLIBL: Libraries on the user portion of your library list will be searched for the file(s).

*CURLIB: The job's current library (*CURLIB) will be searched for files

*ALLUSR: All user libraries (those not beginning with the letter "Q") will be searched for
the file(s).

*ALL: All libraries on the system will be searched for the file(s).

Library-name: Specific library name.

VIEW Parameter

View Name:

Specifies the name of the view to be created.

File-name: Specific file name.

*FROMFILE: The file name indicated by the JDEFILE Parameter will be used as the file name
for the new view.

BLDJDELF (Build view from JDE definition) Command 2-13

Library Name

Library-name: Specific library name

*CURLIB: The current job library will be used as the target for the view.

SCRF Parameter

Names the source file to receive the SQL statements that will define the new file. Statements will
be added to this file in a member having the name indicated by the view Parameter. This is a
required Parameter.

UDC Parameter

The JDE dictionary offers a very flexible scheme for supplying descriptive text for various user
defined codes via the UDC coding feature of the JDE dictionary. BLDJDELF can automatically
incorporate UDC code support into the logical files it creates and allows up to 64 UDC code
fields in a single logical file. Specific code fields of interest can be listed in this parameter, or
BLDJDELF can automatically identify the UDC code fields in the file. UDC descriptions are
incorporated by generating appropriate join specifications to the F0005 dictionary file where
code descriptions are maintained.

*ALL BLDJDELF automatically identifies the UDC code fields in the file and gener-
ates the join specifications for incorporating the UDC descriptions for the fields. If there
are more than 64 UDC fields, an error will be signaled and the source will be retained in
the specified source member so that a user can remove the specifications that are not
required.

*NONE No UDC descriptions will be incorporated in the logical file.

NAME A list of field names can be explicitly supplied for which UDC descriptions are
to be incorporated.

DATE Parameter

Specify date fields to be translated into DB2/400 date fields. Date fields in the "cyyddd" format
used in the JDE database can be converted to DB2/400 date data type fields. You can list up to
31 fields or use the special value *ALL to cause all date fields to be translated.

*ALL: All date fields in the file will be translated.

*NONE: No date fields in the file will be translated. Date values will be presented by the
view in the existing "cyyddd" format.

ZERODATE Parameter

If your system is operating at Version 4 Release 2 or later, you can use this Parameter to convert
zero values in the numeric date fields. Without this feature, records that have a zero date value
will show the "base" value of December 31, 1899.

*NULL: "cyyddd" fields having a zero value will be converted to the NULL value.

2-14 Sequel 11 Programmer’s Guide - Command Reference

*IGNORE: Zero values will be translated as 1899-12-31

Date-value: Specific date value to replace any zero values stored in the database. The date
value must be entered in the job's date format.

REPLACE Parameter

Specifies whether the existing view logical file should be replaced.

*NO: Do not replace the existing view.

*YES: Replace the existing view. The view being replaced will be renamed and moved
to QRPLOBJ library.

AUT Parameter

Controls the authority that *PUBLIC has to the new files.

*LIBCRTAUT:the authority for the logical files is taken from the value specified on the Create
Authority (CRTAUT) Parameter of the library into which the view is being created.

*USE: allows other users to use the logical files.

*ALL: allows others all access to the logical files.

*EXCLUDE: prevents other users from accessing the logical files in any way.

Example

BLDJDELF JDEFILE(F4211) VIEW(QTEMP/F4211X) SRCF(QTEMP/F4211SRC)

A logical file named F4211X will be created in QTEMP using the source file QTEMP/
F4211SRC. The default for the UDC Parameter of *ALL was used. As there are more than 31
code fields, it will be necessary to edit the resulting SQL source to remove the unneeded code
fields.

BLDOPTF (Build Option File) Command 2-15

BLDOPTF (Build Option File) Command

The BLDOPTF command automatically builds Sequel option definitions that support the drill
down mode of inquiry. Drill Down Options are used in the construction of a system that allows
users to “drill down” from summary level information to detailed information from within the
Sequel view display. Drill down options run Sequel views that select information related to the
record on which the option code is entered. When the DISPLAY command is run with
AWLOPT(*YES), the view data display will have an option code entry field adjacent to each
record. Fields on the display supply values for the runtime variables in the prompted view.
Options can be selected by typing the appropriate code next to a record or making a menu selec-
tion. Sequel automatically determines which views are eligible to run from a given display by
matching the field names displayed on the screen to the runtime variables defined in the Sequel
views. The choice of runtime variable names that match the corresponding field name on related
view displays is essential for the successful creation of drill down options.

BLDOPTF identifies the prompted views in the designated libraries, and adds options to the
specified file for running the views. The resulting options will be available for running drill
down displays. The option definitions can be viewed or modified by accessing the option file
from Work with Sequel (WRKSEQUEL) and pressing F16 User Options.

OBJ Parameter

The OBJ keyword indicates which Sequel object(s) you wish to process. All views, reports,
tables, and scripts meeting the criteria will be included in the output. You must have *USE
authority to each view that is selected.

Object Name:

*ALL: All views, reports, tables, and scripts in the selected library are chosen.

Generic*: Views meeting the generic criteria are chosen. Enter the beginning portion of
the object name and append an asterisk.

Object-name: Specific view name.

Library Name:

*LIBL: The current job library list will be searched for the view(s).

*USRLIBL: Libraries on the user portion of your library list will be searched for the view(s).

OUTFILE Parameter

File Name:

Specifies the name of the physical file to receive the option definitions. The file name must be
specified and you must have proper data rights to add records to it. If the outfile does not exist
prior to execution, BLDOPTF will create it unless *LIBL is specified for the file's library. A
"pattern" outfile named OPTFILE in the Sequel library supplies information regarding the size,
allocation Parameters, and maximum number of members allowed.

2-16 Sequel 11 Programmer’s Guide - Command Reference

Library:

*CURLIB: The current library will be used to locate the file. If it is not found, the output
file will be created in the current library.

*LIBL: Using *LIBL as a library name causes your library list to be searched for the
indicated file.

OUTMBR Parameter

Specifies the name of the file member to receive the option definitions.

*FIRST: output is directed to the first member in the file. If this value is specified and the
member does not exist, Sequel creates a member with the same name as the file speci-
fied in the OUTFILE Parameter

Member-name:output is directed to the named member in the file. If the member does not exist,
it will be added to the file.

MBROPT Parameter

If the output file exists before the BLDOPTF command is issued, this keyword indicates if
records in the file will be cleared or whether the option definitions will be appended to the exist-
ing member instead.

*ADD: records currently in the member are retained and new option definitions will be
added to them.

*REPLACE: existing records will be cleared from the output member prior to inserting new
information.

Examples

BLDOPTF VIEW(SEQUELEX/*ALL) OUTFILE(SEQUEL/OPTFILE) OUTMBR(DRILL1)
MBROPT(*ADD)

Option definitions will be created for all runtime prompted views in the SEQUELEX library and
stored in the DRILL1 member of the file named OPTFILE in the SEQUEL library. If the mem-
ber does not already exist, it will be created. Options will be added to the options already in the
member.

BLDOPTF VIEW(*ALL/*ALL) OUTFILE(MYLIB/OPT) MBROPT(*REPLACE)

An option definition for every view on the system will be placed into the first member of
MYLIB/OPT. If the file or member does not exist, it will be created. The member will be cleared
before new option definitions are placed into it.

CFGQRYC04 (Set REPORT Message Handling) Command 2-17

CFGQRYC04 (Set REPORT Message Handling) Command

Use the CFGQRYC04 command to define message handling when creating reports with the
REPORT command. The command has only two parameters.

TOMSGQ Parameter

Set to Y to always send RPT7013 to QSYSOPR. Set to N to send RPT7013 to QSYSOPR in
batch only (like we currently do).

WAIT Parameter

Set a time between 5 and 3600 seconds.

2-18 Sequel 11 Programmer’s Guide - Command Reference

CHGAUTMODE (Change Authorization Mode) Command

This command changes the authorization mode of the IBM i related to the Sequel Web Interface.

MODE Parameter

Specifies the mode in which all users are allowed to process ViewPoint and SWS.

*HOST: This is the default mode and is the same as
 not having a configuration.

*REPOSITORY: All users can only operate in Repository mode. A server URL is required.

*BOTH: All users can operate in either Classic or Repository mode. A server URL is
required.

WEBURL Parameter

Specifies the web server URL needed for Repository. A valid URL that matches the pattern:
http://<SWS Server Name>/sequel/sws, or https://<SWS Server
Name>/sequel/sws

This is not required if the Mode is *HOST, but is required if the Mode is *REPOSITORY or
*BOTH.

*BLANK: Used to remove a previously configured URL. Only allowed for *HOST mode.

Valid URL: A valid server URL.

CHGVIEW (Change View Definition) Command 2-19

CHGVIEW (Change View Definition) Command

This command lets you change the contents and/or attributes of a Sequel view. If you do not
specify new Parameter values on the command, CHGVIEW lets you edit the view interactively.

CHGVIEW Parameters are identical to the Parameters for the Create View (CRTVIEW) com-
mand. Refer to the description of CRTVIEW beginning on page 2-37 for a complete description
of each of them.

The *SAME special value can be used for each Parameter to indicate that the current attributes
should apply to the new view. *SAME is used as a default value for each Parameter unless you
change it.

When you run the CHGVIEW command, the existing view is replaced by the new view that you
define. If the SQL statement is not valid, the old view will not be replaced and your changes will
not take effect.

Interactive interface
The CHGVIEW command can be issued from either an interactive or batch session. If *SAME
is accepted for each Parameter value when the command is entered, an interactive prompting
program will be invoked. It will present displays at your workstation and let you interactively
modify the SQL statement, substitution variable definitions, and view attributes.

Note: If the CHGVIEW command is run from a batch subsystem and no Parameter values are
supplied, the request will end abnormally (CPF0001) because a workstation display is not avail-
able to batch jobs.

Authority considerations
The CHGVIEW command replaces the old view definition with a new one. You must have
object existence (*OBJEXIST) rights to the view you are changing, and library insertion rights
(*OBJOPR and *ADD) for the library containing the view.

When you use CHGVIEW to change a view, all authorities (public and private) in the overlaid
view will be preserved regardless of the value specified by the AUT Parameter (the Authority
entry on the exit display on page 2-23).

If you use CHGVIEW to create a view by entering a new name on the exit display, an authority
value of *SAME causes the public authority to be set as if *LIBCRTAUT were specified on the
CRTVIEW command.

2-20 Sequel 11 Programmer’s Guide - Command Reference

SQL Statement Display

If you run the CHGVIEW command interactively and do not specify any command Parameter
values, a display similar to the one below will appear so that you can edit the view definition.

Unlike the statement display provided by Sequel’s user interface (DSNVIEW), the CHGVIEW
display presents the view’s SQL statement on an unformatted entry screen. The entire display is
entry capable. You can change the SQL statement by using your terminal’s standard cursor con-
trol and editing keys.

The CHGVIEW displays support both 80 and 132 column workstations. If you are using a work-
station capable of displaying 132 columns, F11 can be used to switch between 80 and 132 col-
umn format. If the view is too long for the 80 column format, the initial display will appear in
132 column mode and you will not be able to switch to 80 column mode until the view is short-
ened. If a view is too large to be changed from a 80 column device, you can change it from a 132
column workstation or by using the DSNVIEW command to start the Sequel user interface.

Use F23 to change the definitions for the runtime variables used in your view. When you press
F23, a display similar to the one below will appear.

Press F3 to exit the CHGVIEW display session. The exit display showing the current view attri-
butes will appear. It looks like the example shown on page 2-22.

CHGVIEW (Change View Definition) Command 2-21

Runtime variable definitions

The variable definition display lets you change the view’s variable definitions. Access it by
pressing F23 from the SQL statement display shown on the preceding page. The display looks
like the one below.

Each variable defined in the SQL statement is shown on the display. Use the roll keys to access
additional pages of information if the display is full. Variables are presented in the sequence
defined in the view.

The name, type, text and length are shown. Additional elements of the variable (prompt text,
default, integrity checking, omit specifications, extended help) can be viewed by pressing F4.
The extended display will look like the one on the next page. Use F4 to switch between the
extended display and the one above.

Variables that had been previously defined but are no longer in the current SQL statement will
have a type of *DELETED and you will not be able to change information for them. If you add
the variable back into the statement, its type will revert to its previous definition and you will be
able to work with it again.

The sequence of the variables defines their order on the runtime prompt display. You can reorder
elements on the display by changing the sequence number shown to the left of the variable defi-
nition. When you press Enter, the list will be shown in its resequenced order, lowest to highest.

Function keys
Press F12 to accept the current variable definitions and return to the SQL statement definition
display.

Press F3 to exit the CHGVIEW display session. The exit display showing the current view attri-
butes will appear. It looks like the example shown on page 2-22.

2-22 Sequel 11 Programmer’s Guide - Command Reference

If you press F4 from the variable definition display, the expanded variable definition will appear.
Use it to enter the remaining elements of each variable definition. The expanded prompt looks
like the one below.

exite dispaly

Change any of the items on the prompt by typing over the current values shown on the display.
Use the roll keys to access other definitions in the view.

You can return to the “compressed” single line definition format by pressing F4.

Press F12 to accept the current variable definitions and return to the SQL statement definition
display.

Press F3 to exit the CHGVIEW display session. The exit display showing the current view attri-
butes will appear. It looks like the example shown on the next page.

CHGVIEW (Change View Definition) Command 2-23

Exit display

Press F3 from the SQL statement or the variable definition displays to request the view attributes
display and exit the CHGVIEW prompt session.

Use the display to change the default execution attributes for the view and to update the view
with your changes.

The current view attributes are presented on the display. Refer to the Parameter values for the
Create View (CRTVIEW) command beginning on page 2-37 for a description of the keywords
and their associated values.

You can create a new view by changing the view name (or library) listed at the top of the display.
If you change the view name and a view with the name you specify already exists, a warning
message will appear and you must press the Error Reset key then F11 to replace it with the SQL
statement from the previous display.

Use F12 to back up to the previous display, or press F3 to exit without changing the view and
leave it in its original condition. Press the Enter key to replace the view. If there are any errors,
the SQL statement definition (first display) will be redisplayed and the error messages will be
presented at the bottom of the display.

Examples

CHGVIEW VIEW(SEQUELEX/CUSTLIST) MSG(*NO)

Status messages will not appear when the view is run. Since the new Parameter value was speci-
fied on the command, the interactive displays will not be presented to the user.

2-24 Sequel 11 Programmer’s Guide - Command Reference

CHGVIEW VIEW(SEQUELEX/ORDERINQ)

The CHGVIEW displays will be presented to the user so the view can be edited interactively.

CHGVIEW VIEW(SEQUELEX/ORDERSUM) JTYPE(*ONLYDFT)

The ORDERSUM view will be changed to an “only default” type of joining view. (See the
Sequel SQL Reference Guide for a complete explanation of joining.) Since the new Parameter
value was specified on the command, the interactive displays will not be presented.

CHGVIEW VIEW(SEQUELEX/CUSTLIST) SQL('SELECT * FROM CUSTMAST)AUT(*ALL)

The CUSTLIST view is re-created with a different SQL statement. All users will have complete
object rights to the view.

CHGRPTD (Change Report Description) Command 2-25

CHGRPTD (Change Report Description) Command

This command lets you make changes to a report description without redesigning it with the
interactive report design (DSNREPORT) tool. Using this command, you can update a report’s
link to a view. You can easily change the report to search the library list for a view or change it to
reference a different view and library altogether.

Note: You should use caution when using this command. It is possible to change the report in
such a way as to disable its function. Redirecting the report to an incompatible view, or changing
the page size attributes to a format incompatible with its original design are two such examples.

The command syntax is shown below.

The Parameter default of *SAME indicates that values supplied when the report was created
should apply during this execution. You can view the current values by prompting the command
after supplying a report name.

REPORT Parameter

Specifies the name and library of the report to be changed. You must have change authority
(*CHANGE) to the report definition in order to modify its attributes.

*LIBL: the library list will be searched for a report matching the naming criteria you
have specified.

*CURLIB: your job’s “current” library will be searched for the report.

VIEW Parameter

Identifies the view to be used when the report is edited and run.

*LIBL: the library list of the job that runs the report will be searched for the view when
the report is run.

TITLE Parameter

Describes the title that is substituted when the @@TITLE field is referenced. This value can be
up to 50 characters long, but characters past the length of the original title definition will not
appear on the report until after it has been re-designed and saved.

FOOTING Parameter

Describes the footing that will appear at the bottom of each page. This value can be up to 30
characters long and can be supplied even if the original report did not specify a footing. The full
footing value specified for this Parameter will appear on the report.

2-26 Sequel 11 Programmer’s Guide - Command Reference

PAGESIZE Parameter

Specifies the size of the paper the report will print on. Indicate the height of the page in lines (up
to 99) and the width of the paper in columns (up to 398).

OVRFLW Parameter

Controls the maximum number of lines that can appear on each page. It must be equal to or less
than the number of lines on the page given by the PAGESIZE keyword. A bottom margin can be
forced to appear on each page by setting the overflow value less than the page size. The default
overflow line is line 60.

LPI Parameter

Many printers are capable of printing with various vertical densities. This keyword controls the
number of lines per inch (LPI) which will be printed on the page. Standard values are 6 and 8;
your printer may allow others. The default is 6 lines per inch.

CPI Parameter

Controls the horizontal print density by indicating the number of characters per inch (CPI) to be
printed on a line. Standard values are 10, 12, and 15; your printer may allow others. Specify a
CPI value of 16 to create spooled output with a 16.7 CPI pitch. The default is 10 characters per
inch.

Note: The logical size of the page is controlled by the combination of PAGESIZE and LPI/CPI
values. It is usually best to measure the physical paper size first, and then divide the dimensions
by the desired LPI and CPI values in order to arrive at the appropriate PAGESIZE dimensions.

FORMTYPE Parameter

Describes the type of form that the report will print on. This is a text entry up to 10 characters
long.

COPIES Parameter

Specifies the number of copies of the report that will be printed each time the report is run. Mul-
tiple copies are produced through OS/400 print management, not by running the report several
times.

HOLD Parameter

Indicates whether or not the spool file created when the report is run will be automatically have
a “hold” status when placed into the output queue. If so, it will not print until manually released
by the system or output queue operator.

CHGRPTD (Change Report Description) Command 2-27

SAVE Parameter

Indicates whether or not the spool file created when the report is run will be automatically have
a “save” status when placed into the output queue. If so, it will remain in the output queue (with
a “hold” status) after printing until specifically deleted by the system or output queue operator.

Examples

CHGRPTD REPORT(SEQUELEX/CUSTLISTR) VIEW(*LIBL/CUSTLIST)

The CUSTLISTR report in the SEQUELEX library will be changed so that it searches the
library list for the CUSTLIST view when the REPORT and DSNREPORT commands are run.

CHGRPTD REPORT(SAMPLE) PAGESIZE(68 132) OVRFLW(64) LPI(8)

The formatting characteristics of the SAMPLE report (on the library list) will be changed as
indicated.

2-28 Sequel 11 Programmer’s Guide - Command Reference

CHGTBLD (Change Table Description) Command

The Change Table Description (CHGTBLD) command allows you to make changes to several
aspects of the table description without redesigning it with the table design (DSNTABLE) tool.

Perhaps the most useful application of this command occurs when you relocate a view that is ref-
erenced by a table to a new library. If the table is not updated, it will continue to reference the
view in its previous library. Using this command, you can update the table's link to the view,
changing it to the new library, or changing it to reference the library list when searching for the
view.

You should use caution when using this command. It is possible to change the table to an incom-
patible view, which would disable its function. The Parameter default of *SAME indicates that
values supplied when the table was created should apply during this execution.

TABLE Parameter

Specifies the name and library of the table to be changed. You must have change authority
(*CHANGE) in order to modify a table's attributes

*LIBL: The library list is to be searched for tables matching the naming criteria you
have specified.

*CURLIB: Your job's "current" library will be searched for the table

VIEW Parameter

Identifies the view to be used when the table is edited and run.

*SAME: The view associated with the table will be used.

*LIBL: The library list of the job that runs the table will be searched for the view when
the table is run.

TEXT Parameter

Allows up to 50 characters to be associated with the table. It is attached to the data area and
serves as documentation for the table as well as becoming the display and report title during exe-
cution.

Example

CHGTBLD TABLE(SEQUELEX/CUSTLISTT) VIEW(*LIBL/CUSTLIST)

The CUSTLISTT table in the SEQUELEX library will be changed so that it searches the library
list for the CUSTLIST view when the table is run and DSNTABLE commands is run.

CHKIFSLOCK (Check IFS Locks) Command 2-29

CHKIFSLOCK (Check IFS Locks) Command

The Check IFS Locks (CHKIFSLOCK) command checks for locks on the sequelcc.jar file
which is used by JDE, ADS and *LOCALSYS/*SEQUEL connection types. This command can
be used before an install to check for object locks. Enter the command to open the screen like so.

The following options and functions are available:

Option 4: Enter this value to end the job.

Option 5: Enter this value for any job to view details.

F5: Press to refresh the screen.

2-30 Sequel 11 Programmer’s Guide - Command Reference

CRTDASHLNK (Create Dashboard Link) Command

This command creates a link to a Sequel Viewpoint dashboard stored in a stream file with a .vpt
extension. The link is created as a user space (*USRSPC) object and is stored on the
System i.

SQLDASHLNK (Link Name) Parameter

The SQLDASHLNK keyword indicates the name of the dashboard link that will be created.

Dashboard Link Name

*VPT: The dashboard created in the library will have the same name as the .vpt file that
it is linked to with these limitations: only the first 10 characters of the file name are used
and any invalid OS/400 character names are translated to an underscore '_' character.

Object-name: Specific dashboard link name

Library Name

*CURLIB: The job's current library (*CURLIB) will be searched for dashboards.

Library-name: Specific library name

DIR Parameter

Specifies the name of the directory to search for the specified .vpt files specified by the VPT
parameter.

Indicate a valid path and file name. It may contain up to 2000 characters. The directory name
must be fully qualified i.e. it must begin with a '/' or '\' or the results are not predictable.

Path names are entered left-to-right, beginning with the highest level directory and ending with
the name of the object to be created. The name of each component in the path is separated by a
slash (/) or back slash (\). For example:

'/Dir1/Dir2' or '\Dir1\Dir2'

Path Rules
A '/' or '\' at the beginning of a path name means that the path begins at the topmost directory, the
"root" (/) directory. For example, "/Dir1/Dir2" where /Dir1 is a subdirectory of the "root".

Note: Directories in a path MUST exist prior to running the command.

VPT Parameter

Specifies the name of the Sequel Viewpoint dashboard contained in a stream file with a .vpt
extension. When specifying a generic name use '*' for the generic character.

CRTDASHLNK (Create Dashboard Link) Command 2-31

*: All Viewpoint dashboards in the directory specified by the DIR parameter are
chosen.

Generic*: Viewpoint dashboards meeting the generic criteria are chosen. Enter the begin-
ning portion of the object name and append an asterisk.

Object-name: Specific Viewpoint dashboard name

TEXT Parameter

Allows up to 50 characters to be associated with the dashboard link.

AUT Parameter

Specifies the authority given to the users who have no specific authority to the dashboard link
and without specific authority granted to their user profile group.

Note: When overwriting an existing dashboard link, all authorities (public and private) in the
overlaid view will be preserved.

When a new dashboard link is created, it's public authority will be set using the value specified
by the Authority entry. If *SAME is used for a new dashboard link, the public authority will be
set as if *LIBCRTAUT were specified.

*LIBCRTAUT:the authority for the dashboard link is taken from the value specified on the Cre-
ate authority (CRTAUT) parameter of the library into which the dashboard link is being
created.

*USE: allows other users to examine and run the dashboard link.

*ALL: allows others to examine and run and change the dashboard link.

*EXCLUDE: prevents other users from accessing the view in any dashboard link.

SUBTREE Parameter

Specifies whether subtrees (subdirectories) of the directory specified by the DIR parameter are
processed.

*NO: Subtrees are not processed.

*YES: Subtrees are recursively processed.

REPLACE Parameter

Specifies whether any existing view should be replaced by the new definition.

*NO: if a dashboard link already exists with the name specified an error will be sig-
naled and the dashboard link will not be created.

*YES: any existing dashboard link will be replaced by the new dashboard link.

2-32 Sequel 11 Programmer’s Guide - Command Reference

CRTSCRIPT (Create Script) Command

The Create Script command lets you create a Sequel script from the command line by converting
a CL source member into a series of script statements. The attribute of the created script will be
SQLSCRIPT; SQLVIEWP if it includes runtime variables.

SCRIPT Parameter

Indicates the name and library of the script to be created. The library must already exist. You
must have operational (*OBJOPR) and insert (*ADD) authority to the library in order to place a
view into it.

If a user space with the same name already exists in the library, it will be replaced if the
REPLACE Parameter is set to *YES.

SRCF Parameter

Indicates the name and library of the source file that contains the member with the command
statements used to create the script. The source file must exist.

SRCMBR Parameter

Indicates the name of the source member that contains the command statements used to create
the script. The source member must exist.

TEXT Parameter

Enter a title or text to be associated with the script. It is attached to the object definition.

AUT Parameter

Specifies the authority given to the users who have no specific authority to the script and without
specific authority granted to their user profile group.

*LIBCRTAUT:the authority for the script is taken from the value specified on the Create
authority (CRTAUT) Parameter of the library into which the view is being created.

*USE: allows other users to examine and run the script.

*ALL: allows others to examine, run, change and delete the script.

*CHANGE: allows others to examine, run, and change the script.

*EXCLUDE: prevents other users from accessing the script in any way.

CRTSCRIPT (Create Script) Command 2-33

REPLACE Parameter

Specifies whether any existing user space object should be replaced by the new definition.

*NO: if a user space object already exists with the name specified on the SCRIPT
Parameter, error SCR1009 will be signaled and the script will not be created.

*YES: any existing user space object will be moved to the library QRPLOBJ and a new
script will be created to take its place.

*VER Replace the original object with a new version while creating a ‘versioned’ copy
of the original. Host object versions are stored in the library specified by the Repository
Library user default, and tracked in the SEQUEL/SQVRSNUS file. See the Appendix of
the
ViewPoint User Guide for more on ViewPoint Versioning.

*DFT Replace operation is based on the user’s [Repository] Replace Action default
value.

OPTION Parameter

Specifies whether an analysis of the created script is to be printed.

*NOLIST: will print an analysis only if an error occurs.

*LIST: always prints an analysis.

VARSPECS Parameter

These define up to 50 variable substitutions that can occur when the script is run. If a runtime
prompt occurs, items on the prompt display will appear in the order of the variable definitions
within this list. Variables in the list need not appear in order referenced in the script.

The runtime prompting facility is described in Part 1 of the Sequel SQL Reference Guide.

Each variable specification contains several items:

Name: the variable reference used in the SQL statement. It must be preceded by an
ampersand (&).

Type: one of five separate types of entries that are allowed for the variable.

NAME: an item starting with an alphabetic character (or an asterisk) and containing no
blanks.

NUMBER: an item containing only digits 0-9 and, optionally, a decimal point or lead-
ing sign.

DATE: a valid date value must be entered. The entered value must have the format indi-
cated by DTSTYLE or be USA, ISO, EUR or JIS format.

QSTRING: the variable is a quoted string. If the value supplied at runtime is not
quoted, Sequel will supply quotes automatically.

2-34 Sequel 11 Programmer’s Guide - Command Reference

EXPR: any valid SQL expression or fraction thereof, including blanks, operators, func-
tions, etc.

Length: specify a value from 1 to 1085 to indicate the allowed length of the substitution
value. If the variable type is NAME, the maximum length is 256. If the variable type is
NUMBER, the maximum length is 29. If the variable type is QSTRING, the quotes are
included in the length.

Precision: If the variable type is NUMBER, specify a value between 0 and the maximum
length indicated by the length element (above). If the variable type is not NUMBER,
this value must be 0.

Prompt Text: up to 32 characters of text can be entered. The text will appear on the prompt
display next to the input field. If no value is specified, or the special value *NONE is
used, the variable name will be used as prompt text. The special value *BLANK can be
used to indicate that the prompt text should be blank.

Prompting of the variable can be bypassed and the default value can be used by specifying the
special value of *NOPROMPT, *NP or *NOPMT.

Default Value: specify a value that will appear on the prompt prior to the user’s entry. The
value must conform to the type indicated by the type element (above). Specify up to 80
characters for the default value but do not exceed the maximum length indicated by the
length element. If a default value is not specified, a zero value will be used for NUM-
BER variables, the current date will be used for DATE values, and a blank will be used
for other variable types.

Keywords can be used to retrieve system values for use as the default value. The keywords
include the following:

Integrity Check:specify one or more rules that must be satisfied by the value entered when the
view is run. The rule must conform to one of the following DDS-equivalent formats.
Sequel will validate the user’s entry according to the specified rule and issue an error if
the rule is violated. The special value *BLANK can be used within a rule to indicate a
blank value for NAME, EXPR, and QSTRING variables.

COMP(rel-op value)

Choose one of six relational operators (EQ, NE, GT, LT, GE, LE) and specify a value
that conforms to the type and length elements.
Ex. COMP(GT 0) or COMP(EQ "ABC")

[NOT] VALUES(value,value,value ...)

Specify a list of values separated by commas, that will constrain the user’s entry. Only a
value matching one of the items in the list will be accepted when the view is run. If the

Keyword Usage Length Comment
*JOBNBR Retrieve current job number 6
*JOB Retrieve current job name 10
*USER Retrieve current user name 10
*JOBDATE Retrieve current job date 6 In job date format
*SYSDATE Retrieve current system date 6 In job date format
*SYSTIME Retrieve current system time 6 In HHMMSS

CRTSCRIPT (Create Script) Command 2-35

keyword NOT precedes the VALUES keyword, then only values not included in the list
will be accepted.
Ex. VALUES("Y","N") or NOT VALUES(0,1,2,3,4,5)

[NOT] RANGE(low-value high-value)

The user’s entry must be between the low value and high value (inclusive) indicated in
the rule. If the keyword NOT precedes the RANGE comparison, then only values out-
side the range will be accepted when the view is run.

CHECK(len)

Forces the user’s value to match the full length of the variable.

CHECK(uc)

Automatically translates lowercase input to uppercase.

SPCVAL(value,value,value,...)

Specify a list of special values separated by commas. If a value that is entered matches
one of these special values, no additional checking is done on the entry. It is especially
useful in the case of passing *ALL to a Parameter on a command instead of using
*ALL/*OMIT to remove text from the SQL statement. This integrity check would most
likely be used in a script variable.

SST(*LDA, mmmm, nnnn)

Write the prompted value to the local data area (LDA) where mmmm is the starting
position and nnnn is the length of the substring. Values in the LDA can be retrieved by
high level programs or a calculation in Sequel Report Writer.

PASSWORD

This integrity test hides the prompted value as it is entered. This is especially useful
when prompting for a user password from the browser using the Sequel Web Interface
product.

You can enter multiple rules for a variable. Separate rules with commas. VALUES, RANGE, and
COMP rules are mutually exclusive. That is, only one of these rules can be specified.
CHECK(len) and CHECK(uc) can be used in conjunction with any other rule.

CHECK(len) and CHECK(uc) can be combined as CHECK(uc len) or
CHECK(len uc).

Comparisons involving NAME and EXPR variables are not case sensitive. The value(s) speci-
fied in the rule can be entered in upper, lower, or mixed case. When the view is run, the user’s
value is compared against the value(s) in the rule in a case independent manner. Values for
QSTRING variables are case sensitive and must be entered by the user in the exact form indi-
cated by the rule.

Extended help: specify up to 256 characters of “extended” help text. When the prompt appears,
a message indicating extended help text is available will be displayed at the bottom of
the screen. If the user positions the cursor to the field and presses the F1 key, a window
will appear showing the extended help text.

2-36 Sequel 11 Programmer’s Guide - Command Reference

Examples

CRTSCRIPT SCRIPT(QTEMP/TEST) SRCF(SEQUELEXU@/SOURCE)
 SRCMBR(RUNTIME5) VARSPECS((&SQLLEN EXPR 4)
 (&SQL EXPR 1000) (&CUSNO NUMBER 6)
 (&CNAME QSTRING 27) (&CALC EXPR 10)
 (&DATE DATE 8) (&ORDFLD))

Creates a script named RUNTIME5 in library SEQUELEX from the RUNTIME5 member of the
SEQUELEX/SOURCE source file. All variables from the CL program must defined on the vari-
able specification (VARSPECS) Parameter. Any unsupported statements will be commented out.

CRTVIEW (Create View) Command 2-37

CRTVIEW (Create View) Command

The Create View command lets you create a Sequel view directly rather than through the
CHGVIEW or DSNVIEW displays. The attribute of the created view will be SQLVIEW;
SQLVIEWP if it includes runtime variables.

VIEW Parameter

Indicates the name and library of the view to be created. The library must already exist and must
not contain a user space with the name you specify. You must have operational (*OBJOPR) and
insert (*ADD) authority to the library in order to place a view into it.

SQL Parameter

This is the SQL statement to be placed into the view. If references to runtime variables are not
included, it is checked for correct syntax by the Sequel parser. Error messages are returned to the
command interface so that you may correct them and retry the command. Refer to Part 1 of the
SQL Reference Guide for a complete description of the SQL language accepted by Sequel.

Up to 64 references to runtime variables may be included in the SQL statement. Each variable in
the statement must be defined by the VARSPECS Parameter. Runtime views are not checked for
correct syntax when they are created. Instead, they are checked when the view is run.

TEXT Parameter

Enter a title or text to be associated with the view. It is attached to the data area and serves as
documentation for the view as well as becoming the display and report title during execution.
Variable names can also be specified to pass user inputs from a runtime prompted view to the
view or report title.

VARSPECS Parameter

These define up to 50 variable substitutions that can occur when the view is run. If a runtime
prompt occurs, items on the prompt display will appear in the order of the variable definitions
within this list. Variables in the list need not appear in order within the SQL statement.

The section beginning on page 4-4 of this Programmer’s Guide contains several examples and
additional information regarding views with variable definitions.

Each variable specification contains several items:

Name: the variable reference used in the SQL statement. It must be preceded by an
ampersand (&).

Type: one of five separate types of entries that are allowed for the variable.

NAME: an item starting with an alphabetic character (or an asterisk) and containing
no blanks.

2-38 Sequel 11 Programmer’s Guide - Command Reference

NUMBER: an item containing only digits 0-9 and, optionally, a decimal point or lead-
ing sign.

DATE: a valid date value must be entered. The entered value must have the format
indicated by DTSTYLE or be USA, ISO, EUR or JIS format.

QSTRING: the variable is a quoted string. If the value supplied at runtime is not
quoted, Sequel will supply quotes automatically.

EXPR: any valid SQL expression or fraction thereof, including blanks, operators,
functions, etc.

Length: specify a value from 1 to 1085 to indicate the allowed length of the substitution
value. If the variable type is NAME, the maximum length is 256. If the variable type is
NUMBER, the maximum length is 29. If the variable type is QSTRING, the quotes are
included in the length.

Precision: If the variable type is NUMBER, specify a value between 0 and the maximum
length indicated by the length element (above). If the variable type is not NUMBER,
this value must be 0.

Prompt Text: up to 32 characters of text can be entered. The text will appear on the prompt
display next to the input field. If no value is specified, or the special value *NONE is
used, the variable name will be used as prompt text. The special value *BLANK can be
used to indicate that the prompt text should be blank.

Prompting of the variable can by bypassed and the default value can be used by specifying the
special value of *NOPROMPT, *NP or *NOPMT.

Default Value: specify a value that will appear on the prompt prior to the user’s entry. The
value must conform to the type indicated by the type element (above). Specify up to 80
characters for the default value but do not exceed the maximum length indicated by the
length element. If a default value is not specified, a zero value will be used for NUM-
BER variables, the current date will be used for DATE values, and a blank will be used
for other variable types.

Keywords can be used to retrieve system values for use as the default value. The keywords
include the following:

In addition to keywords, View and SQL derived expressions can be returned as a default value.

Keyword Usage Length Comment
*JOBNBR Retrieve current job number 6
*JOB Retrieve current job name 10
*USER Retrieve current user name 10
*JOBDATE Retrieve current job date 6 In job date format
*SYSDATE Retrieve current system date 6 In job date format
*SYSTIME Retrieve current system time 6 In HHMMSS
*SYSTEM Retrieve current system time 8

CRTVIEW (Create View) Command 2-39

VIEW(lib/viewname) - The value of the first row and column returned by the view will be used
as a default value. For example:
VIEW(sequelex/custlist)

SQL(expression) - Use this to return a specific column from a file or a derived value for use as
a default. For example: SQL(ZONED(YEAR(current date - 1 year),4,0)), or
SQL(select cname from sequelex/custmast)

Note: The value returned by an SQL expression must be character or ZONED numeric—not
Packed. Use either the ZONED or CHAR function in the expression.

Integrity Check:specify one or more rules that must be satisfied by the value entered when the
view is run. The rule must conform to one of the following DDS-equivalent formats.
Sequel will validate the user’s entry according to the specified rule and issue an error if
the rule is violated. The special value *BLANK can be used within a rule to indicate a
blank value for NAME, EXPR, and QSTRING variables.

COMP(rel-op value)

Choose one of six relational operators (EQ, NE, GT, LT, GE, LE) and specify a value
that conforms to the type and length elements.
Ex. COMP(GT 0) or COMP(EQ "ABC")

[NOT] VALUES(value,value,value ...)

Specify a list of values separated by commas, that will constrain the user’s entry. Only a
value matching one of the items in the list will be accepted when the view is run. If the
keyword NOT precedes the VALUES keyword, then only values not included in the list
will be accepted.
Ex. VALUES("Y","N") or NOT VALUES(0,1,2,3,4,5)

[NOT] RANGE(low-value high-value)

The user’s entry must be between the low value and high value (inclusive) indicated in
the rule. If the keyword NOT precedes the RANGE comparison, then only values out-
side the range will be accepted when the view is run.

CHECK(len)

Forces the user’s value to match the full length of the variable.

CHECK(uc)

Automatically translates lowercase input to uppercase.

SPCVAL(value,value,value,...)

Specify a list of special values separated by commas. If a value that is entered matches
one of these special values, no additional checking is done on the entry. It is especially
useful in the case of passing *ALL to a Parameter on a command instead of using
*ALL/*OMIT to remove text from the SQL statement. This integrity check would most
likely be used in a script variable.

SST(*LDA, mmmm, nnnn)

2-40 Sequel 11 Programmer’s Guide - Command Reference

Write the prompted value to the local data area (LDA) where mmmm is the starting
position and nnnn is the length of the substring. Values in the LDA can be retrieved by
high level programs or a calculation in Sequel Report Writer.

PASSWORD

This integrity test hides the prompted value as it is entered. This is especially useful
when prompting for a user password from the browser using the Sequel Web Interface
product.

You can enter multiple rules for a variable. Separate rules with commas. VALUES, RANGE, and
COMP rules are mutually exclusive. That is, only one of these rules can be specified.
CHECK(len) and CHECK(uc) can be used in conjunction with any other rule.

CHECK(len) and CHECK(uc) can be combined as CHECK(uc len) or
CHECK(len uc).

Comparisons involving NAME and EXPR variables are not case sensitive. The value(s) speci-
fied in the rule can be entered in upper, lower, or mixed case. When the view is run, the user’s
value is compared against the value(s) in the rule in a case independent manner. Values for
QSTRING variables are case sensitive and must be entered by the user in the exact form indi-
cated by the rule.

Omit leading/trailing text:specify text in the SQL statement that should be removed if the spe-
cial value *OMIT or *ALL is entered into the field when the view is run. The compari-
son with unquoted text entered into these elements is not case sensitive. Quoted strings
within the text are case sensitive. Blanks between the leading (trailing) text and the vari-
able are ignored. That is, blanks within the statement that follow the leading text and
precede the trailing text string are automatically stripped with the indicated text.

Extended help: specify up to 256 characters of “extended” help text. When the prompt appears,
a message indicating extended help text is available will be displayed at the bottom of
the screen. If the user positions the cursor to the field and presses the F1 key, a window
will appear showing the extended help text.

OPTIMIZE Parameter

Allows you to indicate one of four optimization goals for the query processor during execution
of the retrieval. These Parameters affect the speed of execution primarily by controlling the
query processor’s ability to create indexes over the data. If performance for a particular query is
unacceptable, modifying this keyword may improve it. Often the best optimization technique
can be determined only through trial and error, trying each technique in order to find the one
which gives the best performance characteristics.

*TOTAL: the query processor will attempt to minimize the entire time required in execut-
ing the query and retrieving the data. Indexes are created if they can be used to improve
access time. This will usually be the best choice when you expect to process all the
records in the view.

*FIRSTIO: the query processor will attempt to minimize the time necessary to open the
query files and return the first set of records. This precludes most discretionary indexes
from being built. The first set of records will appear faster, but the total time to process
all of the records will be longer.

CRTVIEW (Create View) Command 2-41

*MINWAIT: optimizes the time the user must wait for records from the file. This will usually
cause indexes to be built so that only the records requested by the query will be read
during processing.

*FINISH: instructs the query to complete immediately and create a temporary result which
contains the records indicated by the view. This Parameter is not recommended if the
query returns a large number of records as the time (and space) necessary to complete
usually results in worse performance.

ALWCPY Parameter

Controls whether the query processor is allowed to create a copy of the data and work with the
copy rather than the underlying files. Sometimes this can result in enhanced performance. If the
system uses a copy of the data, changes made to the underlying data after the copy is created will
not be reflected in the query. If a copy is created, a status message will be sent indicating the
fact.

*YES: the query processor is allowed to create a copy of the data. It may choose to cre-
ate a copy if a significant performance advantage will result.

*NO: a copy of the data cannot be used by the query. If the nature of the query is such
that a copy is required in order to complete the request, the query will abort and not
complete normally.

*IFRQD: data copying is allowed only if it is required in order to complete the query. A
copy of the data is not allowed if it will only serve to improve performance.

Note: ALWCPY is only available for a SERVER value of *SEQUEL.

MSG Parameter

Controls the sending of various status messages during query processing. Status messages are
sent at several stages in the query process to inform interactive users about the activity under-
way. These messages appear on the display for a short time and are replaced by other status mes-
sages or erased when the query completes. Status messages are not sent to batch jobs.

*YES: allows the user to be informed during query processing

*NO: prohibits the query processor from sending status messages

UNIQUEKEY Parameter

If an ORDER BY clause is specified, UNIQUEKEY can be used to retrieve only the first record
in a series that matches a given ordering value. The Parameter is ignored unless the ORDER BY
clause is specified. Refer to Part 1 of the Sequel SQL Reference Guide for a complete explana-
tion of ORDER BY and UNIQUEKEY.

Using UNIQUEKEY restricts the view to input operations. It is not update-able. The UPDATE
and DELETE commands cannot use a view with UNIQUEKEY specified. In addition, the
OPNSQLF command will not allow any open options except input (*INP).

2-42 Sequel 11 Programmer’s Guide - Command Reference

*NONE: indicates that the uniqueness of the ordering path is not to be tested and used in
retrieving the records. All records included in the view will be presented.

*ALL: specifies that the entire ordering specification should be used in the uniqueness
test.

integer: only this number of fields (the leftmost being first) will be used in the unique-
ness test. The remaining ordering fields are used in determining which record from the
series with like values will be presented. The first record in each set will appear in the
view.

Note: UNIQUEY is only available for a SERVER value of *SEQUEL.

JTYPE Parameter

Controls what happens when a multi-file (join) request is made, and no secondary records can be
found to match a given primary record. When the CRTVIEW command is run, The value speci-
fied for the JTYPE parameter will override the join type specified in the SQL statement being
run.

When the view is run (DISPLAY, PRINT, etc.) the join type of the first (outermost) subselect can
be modified through the JTYPE Parameter of the command running the view. This lets you
change the join type of the request without forcing the view to be re-created. Refer to the discus-
sion of join types in the Sequel SQL Reference Guide for more information.

*INNER: extraneous primary records will be dropped from the view. Only records that
match all joining criteria will be returned to the user.

*PARTOUT: primary records are included and missing secondary records will be filled with
default values (usually blanks and zeros) when the joined record is created.

*ONLYDFT: only the primary records which do not have a matching secondary will be
included in the view. For example, if you needed to know all the parts which are not cur-
rently on order you could construct a query joining the part master to the order file.
Requesting *ONLYDFT will show all records in the primary (part master) which have
no correspondent in the secondary (order file).

Note: JTYPE(*PARTOUT) and JTYPE(*ONLYDFT) should not be used unless the JOIN BY
clause is specified. You cannot acquire either partial outer or only-default join results if the join-
ing specification is placed in the WHERE clause.

Also, JTYPE is only available for a SERVER value of *SEQUEL.

JORDER Parameter

Controls the order which is used in joining files together. It is ignored unless JTYPE(*INNER)
is specified. Sometimes the system will be able to improve performance of the query if it is
given the freedom to choose the order of the join. An inner join will produce the same record set
regardless of which file is used as primary, secondary, etc. but the order of the records presented
to the user may be different.

*ANY: indicates that the system has the freedom to choose the joining order.

CRTVIEW (Create View) Command 2-43

*FILE: the first file specified in the FROM clause will be used as the primary file, and
all others as secondary files. This value is always assumed when the JTYPE Parameter
indicates *PARTOUT or *ONLYDFT.

Note: JORDER is only available for a SERVER value of *SEQUEL.

JCHECK Parameter

Specifies whether a check will be done that verifies that all files in the FROM clause have a cor-
responding join criteria in the JOIN clause of the view to be created.

*NO: No check will be done.

*YES: A check will be done and an error will be signalled if a file is not referenced in
the JOIN clause.

IGNDECERR Parameter

Specifies how decimal data errors will be treated if they are encountered while the view is pro-
cessed. A decimal data error occurs when a numeric (zoned or packed) field contains non-
numeric information. Each digit position in the field must have a value from 0-9 and the sign
portion of the field must have a range from A-F.

*NO: decimal data errors will not be ignored. Processing may or may not continue
depending on the type of operation being performed.

*YES: decimal data errors will be ignored and processing will continue when possible.
Each invalid decimal digit will be replaced with a zero digit, an invalid sign will be
coded as a positive sign.

ACCPLN Parameter

Specifies whether an access plan will be included with the view definition. An access plan
describes the implementation method that will be used when the view is run. It includes informa-
tion about the indexes that will be used (or built) and the algorithm that will create the results
when execution begins.

If the environment changes between the time the view is created and when it is run, the system
may choose to disregard the old access plan and use a more efficient one. This will occur for
instance if indexes that would impact view performance have been created/deleted since the
access plan was created. The access plan will be updated whenever a CHGVIEW or CRTVIEW
command specifies *YES as the value for the ACCPLN Parameter.

Specifying ACCPLN(*YES) on the CRTVIEW or CHGVIEW command will result in view data
areas that are larger (often 3-5 times) and may execute more quickly, depending on the complex-
ity of the view. Generally speaking, the storage cost is usually only a few kilobytes. If a view is
used many times, the cumulative savings in execution time can be noticeable.

*NO: an access plan will not be saved when the view definition is created.

*YES: an access plan will be included with the view definition.

2-44 Sequel 11 Programmer’s Guide - Command Reference

DTSTYLE Parameter

Specifies the “preferred” style for date and time values. These values indicate the form of non-
international character strings used in the Sequel statement. All date/time literals and character
strings in the statement must conform to the format indicated by the DTSTYLE Parameter, or
they must have USA, ISO, EUR, JIS, or JL1 form. Date/time values can be presented in the for-
mat specified format when the view data displayed and/or printed if DTSTYLE(*SAME) is
specified on the execution request. Refer to the Sequel SQL Reference Guide for information
about Sequel’s ability to format date and time values.

Four values are provided by the DTSTYLE Parameter. They are:

Date format
Date separator
Time format
Time separator

The default value, *JOB, indicates that the current format specified for your job will be used as
the preferred date format for the date/time values returned by the view.

SERVER Parameter

Use this Parameter to specify the target database for the request. For queries running on the local
machine, this parameter allows selection of the faster SQL Query Engine (SQE) which can offer
dramatic performance improvement for longer running queries. Other queries can be created to
run against any other remote system that supports DDM, CLI or JDBC access that we can con-
nect to through the local machine.

*SAME: Not supported.

*SEQUEL: The SQL statement must use Sequel statement syntax and the resulting view is
intended to run on the local machine using the CQE processor. At runtime, the view may
be run using the SQE processor by specifying SERVER(*LOCAL/*LOCALSYS) as
long as automatic conversion can take place.

*LOCAL: The SQL statement contains *SEQUEL or native SQL/400 statement syntax
and the request will be processed (using SQL naming – lib.file) on the local machine.
The default schema (usually the library with the same name as the current user, if it
exists) will be used to resolve the library name of unqualified UDFs or files in the
FROM clause. If the statement is written using *SEQUEL syntax, the SYNTAX param-
eter must specify *SEQUEL. If native syntax is provided, the SYNTAX parameter must
specify *SERVER. The resulting view will be run by the machine using the SQL Query
Engine (SQE).

*LOCALSYS: The SQL statement contains *SEQUEL or native SQL/400 statement syntax
and the request will be processed (using system naming or *SYS – lib/file) on the local
machine. The library list of the current job will be used to resolve the library name of
unqualified UDFs or files in the FROM clause. If the statement is written using
*SEQUEL syntax, the SYNTAX parameter must specify *SEQUEL. If native syntax is
provided, the SYNTAX parameter must specify *SERVER. The query will be run by the
machine using the SQL Query Engine (SQE).

CRTVIEW (Create View) Command 2-45

Note: The green-screen design interface will not prompt for a multi-member file when
*LOCALSYS is specified for the SERVER parameter. *LOCALSYS only allows for selection
from the file name itself (usually the*FIRST member).

server-name: The SQL statement will be processed on a remote database server. The server-
name must correspond to a valid server definition in the SEQUELHost file.The SQL
statement can be written in *SEQUEL or in the native statement syntax for the specified
database server. If written in *SEQUEL, the following SYNTAX parameter must spec-
ify *SEQUEL.

SYNTAX Parameter

This parameter specifies the specific SQL syntax used in the SQL statement. The SERVER and
SYNTAX parameters work together to allow for designing views using *SEQUEL syntax using
elements such as JOIN, CVTDATE and named references to derived fields while connecting to a
remote database or local machine. For local queries, this also allows using *SEQUEL syntax for
ease of use while running the query against the faster SQE.

*SERVER: The SQL statement is written in the syntax of the database (SEQUEL, MySQL,
SQLServer, Oracle, etc.) specified on the SERVER Parameter. No conversion from
*SEQUEL to native SQL takes place.

*SEQUEL: The SQL statement is written and saved in *Sequel syntax. At runtime, if a
SERVER other than *SEQUEL is specified, the statement is automatically converted to
the standard SQL syntax of that database (MySQL, SQL Server, Oracle, etc.); references
to multi-member files, multi-format files and ambiguous field names (unqualified field
names that exist in more than one file in the FROM clause) cannot be converted and will
cause the execution of the view or SQL statement to fail. See the Sequel 10 SQL Refer-
ence Guide appendix for a more complete list of *SEQUEL features that will not auto-
matically convert to native SQL.

AUT Parameter

Specifies the authority given to the users who have no specific authority to the view and without
specific authority granted to their user profile group.

*LIBCRTAUT:the authority for the view is taken from the value specified on the Create author-
ity (CRTAUT) Parameter of the library into which the view is being created.

*USE: allows other users to examine and run the view.

*ALL: allows others to examine, run, change, and delete the view.

*EXCLUDE: prevents other users from accessing the view in any way.

REPLACE Parameter

Specifies whether any existing view should be replaced by the new definition.

*NO: if a view already exists with the name specified on the VIEW Parameter, error
QRY2100 will be signaled and the view will not be created.

2-46 Sequel 11 Programmer’s Guide - Command Reference

*YES: any existing view will be moved to the library QRPLOBJ and a new view will
be created to take its place.

*VER Replace the original object with a new version while creating a ‘versioned’ copy
of the original. Host object versions are stored in the library specified by the Repository
Library user default, and tracked in the SEQUEL/SQVRSNUS file. See the Appendix of
the
ViewPoint User Guide for more on ViewPoint Versioning.

*DFT Replace operation is based on the user’s [Repository] Replace Action default
value.

TEXT Parameter

The TEXT parameter allows up to 128 characters to be associated with the view. It is attached to
the data area and serves as documentation for the view as well as becoming the display and
report title during execution. Variable names can also be specified to pass user inputs from a run-
time prompted view to the view or report title.

Examples

CRTVIEW VIEW(QTEMP/CUSTLIST)
 SQL('SELECT * FROM sequelex/custmast ORDER BY cname')

Creates a view in the QTEMP library which retrieves all customer information and presents
records in name order.

CRTVIEW VIEW(QGPL/NO_ORDERS)
 SQL('SELECT prdno.1,descp FROM partmast,ordline
 JOIN prdno.1=prdno.2 ORDER BY prdno')
 JTYPE(*ONLYDFT)

Shows only the products not currently on order by using an exception join to link the product
master file to the order file. Only records for which there is no match will be returned.

CRTVIEW VIEW(QGPL/LASTORD)
 SQL('SELECT cusno.1,cname,ordno,
 cooyr*10000+coomn*100+coody
 Len(6,0) Name(date) Edtcde(Y)
 FROM custmast,ordhead JOIN cusno.1=cusno.2
 ORDER BY cusno,date desc')
 UNIQUEKEY(1) JTYPE(*PARTOUT)

Returns information about the last order for each customer. The JTYPE(*PARTOUT) Parameter
causes all customers to be shown, even if no order is available.

CRTVIEW (Create View) Command 2-47

CRTVIEW VIEW(QGPL/RUNTIME)
 SQL('SELECT * FROM &lib/&file ORDER BY &field')
 TEXT('&Lib/&File ordered by &field')
 VARSPECS((&FILE NAME 10 *N 'File name' *N *N *N *N
 'Specify the file name to be viewed.')
 (&LIB NAME 10 0 'Library name' *LIBL *N *N *N
 'Specify the library name containing the file or
 *LIBL to look for the file on the lib. list.')
 (&FIELD NAME 10 0 'Ordering field' *OMIT *N 'ORDER BY'
 *N 'Enter a field name from the file to be used
 in ordering the display.'))

Creates a runtime prompted view that allows entry of a file and library name and an ordering
field. The file, library and field are displayed as a title on the screen when the view is run.

2-48 Sequel 11 Programmer’s Guide - Command Reference

CVTPDMFSQL (Convert PDM File to Sequel) Command

The CVTPDMFSQL command will convert PDM like option files to a file with a record length
of 1000. This command was most useful when the Sequel option file changed names from
QUAOOPT to OPTFILE in September 1995 because the record length of the file was increased
to 1000 positions.

FILE Parameter

The file name and library name of the option file to be converted to the new format.

CVTQRY (Convert Query) Command 2-49

CVTQRY (Convert Query) Command

The CVTQRY command converts AS/400 query definitions (*QRYDFN), Query Management
queries (*QMQRY), and Query Management forms (*QMFORM) to Sequel views and/or
reports.

QRY Parameter

Query Name

Specify the name and library of the query that you want to convert. A generic name (leading
characters followed by an asterisk) or *ALL can be specified to select objects with sim-
ilar names.

Library Name

*LIBL: Uses the library list to find the objects specified by the name Parameter.

*ALL: All libraries on the system will be searched for objects that meet the name part
of the search criteria.

*ALLUSR: All user libraries will be searched for the objects that meet the name part of the
search criteria.

*CURLIB: Your job's current library will be searched for the objects that meet the name
part of the search criteria.

*USRLIBL: The user portion of your job's library list will be searched for the objects that
meet the name part of the search criteria.

QRYTYPE Parameter

Specify the type of query that you want to convert.

*QRYDFN: Convert Query/400 queries. The conversion process will generate a Sequel view
and/or report depending upon the REPORT and QUERY Parameters.

*QMQRY: Convert Query Management queries. The conversion process will generate a
Sequel view.

*QMFORM: Convert Query Management forms. The conversion process will generate a
Sequel report and may also generate a view depending upon the QUERY Parameter. To
use this value, you must also specify a Query Management query on the QMQRY
Parameter.

REPORT Parameter

Specify the name of the Sequel report that you want the specified query converted to.

Report Name

*QRY: The report name is the same as the query being converted.

2-50 Sequel 11 Programmer’s Guide - Command Reference

*NONE: No Sequel report is generated.

Library Name

*QRYLIB: The report conversion library will be the same as the query being converted.

Name: Specify the name of the library to place the converted report.

VIEW Parameter

Specify the name of the Sequel view that you want the specified converted to

View Name

*QRYV: The view name is the same as the query being converted with a 'V' appended to
it. Sequel views and reports with the same name cannot be contained in the same library.

*QRY: The view name is the same as the query being converted.

*NONE: No Sequel view is generated.

Library Name

*QRYLIB: The view conversion library will be the same as the query being converted.

Name: Specify the name of the library to place the converted report.

REPLACE Parameter

Specify whether existing Sequel objects will be replaced.

*NO: Existing Sequel report and views will not be replaced by the conversion process.

*YES: Replace existing Sequel objects with the converted object.

QMQRY Parameter

When converting Query Management forms, you must also specify a Query Management query
for the conversion process to work correctly.

QM Query Name

*QMFORM: The Query Management query to be used is the same name as the form being
converted. The information CVTQRY is able to extract from the query definition is at
the mercy of IBM's RTVQMQRY command. Therefore a few limitations exists:

Library Name

*QMFORMLIB:The Query Management query is in the same library as the Query Manage-
ment form.

Note: The information CVTQRY is able to extract from the query definition is at the mercy of
IBM's RTVQMQRY command. Therefore a few limitations exist:

• The view will always be created with a *INNER (matching) join type.

CVTQRY (Convert Query) Command 2-51

• Member names will not be specified on the FROM clause. Member *FIRST will be
assumed.

• Edit codes will not be preserved in all instances.
• 378 maximum width when converting reports.
• Cannot convert a view built over multi-format logical files.

SERVER Parameter

Use this parameter to specify the target database for the request.

*SEQUEL: The view will be created to use the CQE and the request will be processed on
the local machine using *SEQUEL syntax.

*LOCALSYS: The view will be created to use the SQE using *SEQUEL syntax.

SYNTAX Parameter

This parameter specifies the specific SQL syntax used in the SQL statement. The SERVER and
SYNTAX parameters work together and will determine which query processor (SQE or CQE)
the view will use and whether the view will be written in Sequel syntax or native SQL.

*SERVER: The SQL statement is written in native SQL.

*SEQUEL: The SQL statement is written and saved in *SEQUEL syntax. At runtime, if a
SERVER of *LOCALSYS is specified, the statement is automatically converted to the
standard SQL syntax. If syntax of *SEQUEL is used with SERVER(*LOCALSYS), ref-
erences to multi-member files, multi-format files and ambiguous field names (unquali-
fied field names that exist in more than one file in the FROM clause) cannot be
converted and will cause the execution of the view or SQL statement to fail. See the
Sequel 10 SQL Reference Guide appendix for a more complete list of *SEQUEL fea-
tures that will not automatically convert to native SQL.

2-52 Sequel 11 Programmer’s Guide - Command Reference

CVTRPT (Convert Report Format) Command

The internal stored form of Sequel reports may change from one release of the Sequel software
to another. You may be instructed to use this command to convert the internal stored form of
your reports to a new form as a consequence of installing a new version of the Sequel software
on your system. You will not need to run this command unless instructed to do so. Using this
command will not alter any reports with the current internal format.

The command will be run automatically if you attempt to run either the Design Report (DSNRE-
PORT) command or the REPORT command using an obsolete report. A message will appear in
your job log if it is run automatically.

REPORT Parameter

Specifies the name and library of the report(s) to be converted to new format. You must have
operational authority (*OBJOPR) in order to convert a report. You can specify individual reports
or make a generic request for conversion.

*ALL: indicates that all reports in all libraries should be converted. Sequel will find all
SQLRPT user spaces on your system (to which you have *OBJOPR authority) and
ensure that they have the current format. *ALL can be specified for either the report
name or the library name, or both.

*LIBL: the library list is to be searched for reports matching the naming criteria you
have specified.

Examples

CVTRPT REPORT(*ALL/*ALL)

All Sequel reports on the system should be brought up to the current format.

CVTRPT REPORT(RPTLIB/*ALL)

All reports in the RPTLIB library should be converted.

CVTSQTOIFS (Convert Sequel Objects to IFS) Command 2-53

CVTSQTOIFS (Convert Sequel Objects to IFS) Command

Use the CVTSQTOIFS command to convert the *USRSPC-based Sequel objects into an IFS
object that can be accessed by the Sequel Web Server (SWS).

OBJ Parameter

This is the Sequel object name to be converted to the IFS. You can specify individual views or
make a generic request for conversion. Object names are specified as follows:

*ALL All the Sequel objects in requested library/libraries should be converted.

generic* All Sequel objects that start with the characters preceding the asterisk (*) in the
requested library/libraries should be converted.

name The name of the Sequel object in the requested library/libraries should be con-
verted.

Library names are specified as follows:

*LIBL The library list is to be searched for Sequel objects matching the naming criteria
you have specified.

*CURLIB The current library is to be searched for Sequel objects matching the naming cri-
teria you have specified.

*USRLIBL The user library list is to be searched for Sequel objects matching the naming
criteria you have specified.

*ALLUSR The user libraries list is to be searched for Sequel objects matching the naming
criteria you have specified.

*ALL All libraries are to be searched for Sequel objects matching the naming criteria
you have specified.

ATTRIB Parameter

Select which types of Sequel objects to convert:

*ALL to convert all Sequel objects specified.

VIEW to convert SQLVIEW objects

TABLE to convert SQLTBL objects

REPORT to convert SQLRPT objects

APP to convert SQLAPP objects

DASHBOARDto convert SQLDASH objects

SCRIPT to convert SQLSCR objects

VPTDIR Parameter

2-54 Sequel 11 Programmer’s Guide - Command Reference

This optional parameter directs the conversion process to the IFS directory in which the con-
verted Sequel objects will be saved. If this parameter is not specified, the directory will be
/sequel/swi/repository.

It is strongly recommended that you supply a full path, including a final folder, for this parame-
ter.

CVTSYNTAX (Convert Syntax) Command 2-55

CVTSYNTAX (Convert Syntax) Command

The Convert Syntax (CVTSYNTAX) command is used in a CL program to convert the syntax of
an SQL statement from *SEQUEL syntax to the SQL statement of the specified server database.

SQL Parameter

Specifies the SQL statement to be converted.

JTYPE Parameter

Specifies the join type (*INNER, *PARTOUT, *ONLYDFT) of the SQL statement to be con-
verted.

CVTSQL Parameter

Specifies the name of the CL variable to receive the converted SQL statement. This variable
must be a character variable. If the SQL statement is longer than the variable, the variable will be
filled with the leftmost characters of the SQL statement. If the statement is shorter than the vari-
able, the rightmost characters of the variable will be set to blanks.

SQLLEN Parameter

Specifies the name of the CL variable to receive the length of the converted SQL statement. This
variable must be a five position decimal variable with no decimal positions.

TOSERVER Parameter

The SQL will be converted into the syntax of the database specified.

2-56 Sequel 11 Programmer’s Guide - Command Reference

CVTVIEW (Convert View) Command

The internal stored form of Sequel views may change from one release of the software to
another. You may be instructed to use this command to convert the internal form of your views
to a new form as a consequence of installing a new version of Sequel software. You will not need
to run this command unless instructed to do so. Using this command will not alter any views
with the “current” form.

CVTVIEW re-creates views by using the CHGVIEW command:

CHGVIEW VIEW(library/view) ALWCPY(*YES)

Existing authorities are preserved. If the FROM clause does not specifically qualify the files that
are used in the view, they must be found on your library list in order for the view to be created. If
the files on the FROM clause do not exist, the view will not be created.

VIEW Parameter

Specifies the name and library of the view(s) to be converted to new format. You must have
operational authority (*OBJOPR) in order to convert a view. You can specify individual views
or make a generic request for conversion.

*ALL: indicates that all views in all libraries should be converted. Sequel will find all
SQLVIEW user spaces on your system (to which you have *OBJOPR authority) and
ensure that they have the current format. *ALL can be specified for the view or library
name, or both.

*LIBL: the library list will be searched for reports matching the naming criteria you
have specified.

Examples

CVTVIEW VIEW(*ALL/*ALL)

All Sequel views on the system will be brought up to the current format.

CVTVIEW VIEW(SQLLIB/*ALL)

All views in the SQLLIB library will be converted.

CVTWHBLDR (Convert Warehouse Builder) Command 2-57

CVTWHBLDR (Convert Warehouse Builder) Command

Use the Convert Warehouse Builder command (CVTWHBLDR) to migrate your Warehouse
Builder Definitions and Sets. The process converts your Warehouse Builder objects and creates
ViewPoint script objects (as user spaces) on the System i and (optionally) on in the ViewPoint
Repository.

Showcase Product Library (PRDLIB)

Specify the library containing the current Showcase host software. This is also where Warehouse
Builder Definitions and Sets are saved.

Warehouse Name (WHBLDR)

Specify an individual definition or set to convert, or all definitions and sets.

*ALL All definitions and sets in the PRDLIB library will be converted.

name Specify a single definition or set to convert.

Script Name (SCRIPT) and Library

Specify the name and location for the new script objects on the System i. These objects are refer-
enced by the ViewPoint files created in the directory specified in the 'ViewPoint File Name
Directory' parameter below.

*WHBLDR The new object is created with a name based on the original object. Due to
object name limitations on the System i, the new object will be named using the for-
mat: XXXXXX9999, where XXXXXX are (up to) the first six characters of the original
object and 9999 is a sequence number starting at 0001 and incremented by one for any
object with the same starting six characters (such as, INVENT0001, INVENT0002 and
so on).

name Specify a new name if converting a single object

Replace (REPLACE)

Specify whether an existing object will be replaced by a new object.

*NO If an object already exists with the same name, do not replace.

*YES If an object already exists with the same name, it is replaced.

ViewPoint File Name Directory (VPDIR)

Specify the IFS location for ViewPoint shortcut files created by the conversion process. These
files reference the user space objects in the library specified in the 'Script Library' parameter
above.

2-58 Sequel 11 Programmer’s Guide - Command Reference

*CVTWHBLDRDIR This option places ViewPoint files (shortcuts with a .vptscript exten-
sion) in the special ViewPoint Repository folder '/sequel/swi/repository/Converted
Warehouse Builder Objects'.

name Specify a folder in the repository root (/sequel/swi/repository/) using the syntax
'/sequel/swi/repository/XXXXX', where XXXXX is the folder for the files. The folder
must exist before using the command.

ViewPoint File Name (VPT)

Specify the name of the new ViewPoint object.

*WHBLDR The new object is created with a name based on the original object.

name Specify a new name if converting a single object.

Convert Servers to *LOCALSYS (LCLSYS)

Specify whether to convert all server names to *LOCALSYS.

*NO - The server names in the original Warehouse Builder definitions will be used in the new
objects.

*YES - The server names in the original Warehouse Builder definitions will be changed to
*LOCALSYS in the new objects.

Use Isolation Control (USEIC)

Specify whether to use isolation control.

*YES - SQL statements which allow for isolation control (DELETE, INSERT, UPDATE) will
be appended with isolation control of WITH NC.

*NO - All SQL statements will be run with no modification.

DELETE (Delete Records With a View) Command 2-59

DELETE (Delete Records With a View) Command

The DELETE command removes an entire set of records from a file. A single record, all records,
or only a few records can be deleted using a single SQL query statement. Records are deleted in
the same manner as if they were deleted using a high level language such as RPG or COBOL.
Once deleted, they cannot be recovered unless the file is under commitment control.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created from the statement
prior to processing. This view is automatically deleted when the command completes.

With the exception of the SETVAR, SERVER and SYNTAX parameters, all other parameters on
the DELETE command are identical to those required by the Create View (CRTVIEW) com-
mand on page 2-37.

For an explanation of the SERVER and SYNTAX parameters, refer to the DISPLAY command
on page 2-63.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

COMMIT Parameter

This parameter is ignored if there is no active commitment definition for the job (see IBM docu-
mentation for STRCMTCTL). When commitment control is active, this parameter indicates
whether and how the open data path will be placed under commitment control. See the discus-
sion on commitment control (page 5-2) for more information.

*NO: The open data path will not be placed under commitment control. Even with
commitment control active, the query will run outside of commitment control.

*YES: The open data path will be placed under commitment control using the default
lock level (LCKLVL) specified with STRCMTCTL.

2-60 Sequel 11 Programmer’s Guide - Command Reference

*CHG: Every record read for update (for a file opened under commitment control) is
locked. If a record is updated, added, or deleted, that record remains locked until the
transaction is committed or rolled back. Records that are accessed for update but are
released without being updated are unlocked.

*CS: Every record accessed for files opened under commitment control is locked.
Records that are not updated or deleted are locked only until a different record is
accessed. Records that are updated, added, or deleted are locked until the transaction is
committed or rolled back.

*ALL: Every record accessed for files opened under commitment control is locked
until the transaction is committed or rolled back.

Additional Considerations

You must have operational authority and READ data rights for each file listed in the FROM
clause. You must also have DELETE data rights to the first file specified in the FROM clause.

The SQL statement used in the DELETE command is not the full query statement. Fields are
never retrieved from the view, so the SELECT phrase is not required. If an SQL statement is
specified, it must begin with the FROM clause.

The ORDER BY clause is allowed, but is unnecessary since the order of the deletions is irrele-
vant. If an ORDER BY clause is present it will only serve to retard query execution.

The records selected by the query must be deleteable. This forces three restrictions on the view
(and SQL statement) specified on the DELETE command:

Grouping queries are not allowed. Grouping reduces several detail records to a single grouped
record. Since the identity of each detail record is lost in the process, grouped records cannot be
deleted.

Queries that use the UNIQUEKEY keyword or have the SELECT DISTINCT clause are not
allowed.

Any query that requires a temporary result for completion cannot be used since the deletion of
records from the temporary file would cause no effect in the file selected for the deletion.

The SQL statement (or the view) may include join specifications and/or subqueries provided that
the first file listed in the outermost FROM clause is not referenced anywhere else in the view or
query statement. If the statement (view) identifies more than one file, records will be deleted
from the first file in the outermost FROM clause.

Parameter Considerations

Because of the considerations above, the ALWCPY keyword is restricted to values of *SAME
and *NO and the UNIQUEKEY keyword is restricted to values of *SAME and *NONE. To
delete records using a view that would normally use a temporary result or unique key access,
you will need to specify ALWCPY(*NO) or UNIQUEKEY(*NONE) on the DELETE com-
mand.

DELETE (Delete Records With a View) Command 2-61

As a general rule, it will be best to allow the system to use OPTIMIZE(*TOTAL) in executing
your query request. Data management will need to process all the records in the view you create,
so the appropriate optimization goal is to expedite the entire query process.

If IGNDECERR(*YES) is specified, decimal data errors encountered while the view is pro-
cessed will be ignored and processing will continue. Each invalid decimal digit will be replaced
with a zero digit, an invalid sign will be coded as a positive sign.

Remote Database Considerations

For *ISERIES connections using *LOCAL or *LOCALSYS, the DELETE target file must be
journaled. For more information on creating and using journals, see the Commitment Control
section starting on page 5-2.

For non-System i remote connections (such as SQL Server, Oracle, and MySQL), syntax
*SEQUEL is not supported. The VIEW or SQL must be written in the syntax of the target data-
base.

The SQL or VIEW used by the DELETE command cannot contain joined files. You can only
specify one file in the FROM clause when a SERVER value other than *SEQUEL is specified.

Error conditions

If an error occurs while the delete is in progress, the delete will end abnormally. Decimal data
errors will not cause abnormal termination if IGNDECERR(*YES) is specified. One or more
low level messages will appear in the joblog along with QRY7008 indicating the nature of the
problem. A completion message will be issued indicating how many records were deleted by the
request.

Refer to Part 5 of this manual (page 5-1) for additional information about Sequel’s data modifi-
cation capabilities.

Examples

DELETE SQL('from custmast')

Removes all records from the customer master file.

DELETE SQL('from transact where date mod 10000 < 1986')

This statement deletes all transaction records with a year (date is MMDDYYYY format) less
than 1986.

DELETE VIEW(OLDORDER)

Deletes records specified by the view named OLDORDER on the library list.

2-62 Sequel 11 Programmer’s Guide - Command Reference

DELETE SQL(‘from custmast, ordhead join by cusno.1=cusno.2’)
SERVER(*SEQUEL) SYNTAX(*SEQUEL)

Deletes customer records from CUSTMAST, but only for those customers who have an order
record in ORDHEAD. Records can only be deleted from the primary file (first file on FROM
clause).

DELETE SQL('from cusno_work where cusno=100200') SERVER(ASCSERVER2SQL)

Deletes the records from the cusno_work file WHERE cusno=100200 on remote server ASC-
SERVER2SQL.

DELETE VIEW(SEQUELEX/SQLSRV200)

Deletes records specified by the view named SQLSRC200 where the view is defined as:

SELECT *
FROM dbo.custlist
WHERE cusno=100200

Server: ASCSERVER2SQL Syntax: *SERVER

DISPLAY (Display View Data) Command 2-63

DISPLAY (Display View Data) Command

The DISPLAY command routes view data to the workstation.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created from the statement
prior to processing. This view is automatically deleted when the command completes.

With the exceptions noted below, parameters for the DISPALY command are identical to those
required by the Create View (CRTVIEW) command. Refer to the description of CRTVIEW
starting on page 2-37 for a complete explanation of each parameter.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

ALWOPT Parameter

Controls whether the data display will provide an entry field adjacent to each record and allow
options to be entered and run. This feature allows users to perform “drill–down” opera-
tions and proceed from one view to underlying or related data in another.

*NO: the data display will not present option entry fields to the user.

*YES: the data display will allow option entry. Options in the current option file will
control how users may use the “drill–down” capability.

Note: ALWOPT is only available for a SERVER value of *SEQUEL.

TEXT Parameter

The TEXT parameter can be specified with an SQL statement, or to override the existing text on
a view. Green screen operations will truncate text at 50 characters while client and browser
interfaces support up to 128 characters.

2-64 Sequel 11 Programmer’s Guide - Command Reference

SERVER Parameter

Use this Parameter to specify the target database for the request. For queries running on the local
machine, this parameter allows selection of the faster SQL Query Engine (SQE) which can offer
dramatic performance improvement for longer running queries. Users will normally ignore this
parameter when running predefined Sequel views.

*SAME: For an existing view, the server specified when the view was created will pro-
cess the request. If *CREATE is specified for the VIEW parameter, then *LOCALSYS
will be used if the user's Sequel Default database is *LOCALSYS, otherwise *SEQUEL
will be used. If an SQL statement is specified, then the request will be processed on the
local machine by the Classic Query Engine (CQE) using *SEQUEL syntax.

*SEQUEL: The view or SQL statement must use SEQUEL statement syntax and the request
will be processed on the local machine using the CQE.

*LOCAL: The view or SQL statement contains *SEQUEL or native SQL/400 statement
syntax and the request will be processed (using SQL naming - lib.file) on the local
machine. The default schema (usually the library with the same name as the current user,
if it exists) will be used to resolve the library name of unqualified UDFs or files in the
FROM clause. If the statement is written using *SEQUEL syntax, the SYNTAX param-
eter must specify *SEQUEL (or *SAME) in order for the SQL statement to be con-
verted to native SQL. The query will be run by the machine using the SQL Query
Engine (SQE).

*LOCALSYS: The view or SQL statement contains *SEQUEL or native SQL/400 statement
syntax and the request will be processed (using system naming or *SYS - lib/file) on the
local machine. The library list of the current job will be used to resolve the library name
of unqualified UDFs or files in the FROM clause. If the statement is written using
*SEQUEL syntax, the SYNTAX parameter must specify *SEQUEL (or *SAME) in
order for the SQL statement to be converted to native SQL. The query will be run by the
machine using the SQL Query Engine (SQE).

server-name: The view or SQL statement will be processed on a remote database server. The
server-name must correspond to a valid server definition in the SEQUELHost file. The
view or SQL statement can be written in *SEQUEL or in the native statement syntax for
the specified database server. If written in *SEQUEL, the following SYNTAX parame-
ter must specify *SEQUEL in order for the SQL statement to be converted to native
SQL.

SYNTAX Parameter

This parameter is used when providing an SQL statement on the SQL parameter above and spec-
ifies the specific SQL syntax used in writing the SQL statement. This provides the ability to
write an SQL query using familiar *SEQUEL syntax using elements such as JOIN, CVTDATE
and named references to derived fields while connecting to a remote database or local machine.
For local queries, this also allows using *SEQUEL syntax for ease of use while running the
query against the faster SQE.

*SAME: Required when running views. For statements provided on the SQL parameter,
*SAME will be treated like SYNTAX(*SERVER).

DISPLAY (Display View Data) Command 2-65

*SERVER: The SQL statement is written in the syntax of the database (SEQUEL, MySQL,
SQLServer, Oracle, etc.) specified on the SERVER Parameter. No conversion from
*SEQUEL to native SQL takes place.

*SEQUEL: The SQL statement or view is written in *SEQUEL syntax. If a SERVER other
than *SEQUEL is specified, the statement is automatically converted to the standard
SQL syntax of that database (MySQL, SQL Server, Oracle, etc.); references to multi-
member files, multi-format files and ambiguous field names (unqualified field names
that exist in more than one file in the FROM clause) cannot be converted and will cause
the execution of the view or SQL statement to fail. See the Sequel Reference Guide
appendix for a more complete list of *SEQUEL features that will not automatically con-
vert to native SQL.

Output characteristics

Decimal data errors encountered while the view is processed will be represented as question
marks (?) on the display if IGNDECERR(*NO) is specified on the DISPLAY command or view.
Failure to specify IGNDECERR(*YES) may cause view processing to terminate if an expres-
sion or selection operation involving invalid decimal data occurs.

If IGNDECERR(*YES) is specified, each invalid decimal digit will be replaced with a zero
digit, and an invalid sign will be coded as a positive sign. Processing will not terminate if invalid
decimal data is encountered during expression evaluation or record selection.

Null values will appear on the display as either “n/a” or a “¬”, depending on field length. This
special value will be left adjusted in character and date columns and right adjusted in numeric
columns.

Examples

DISPLAY SQL('SELECT cname,cphon FROM custmast
 ORDER BY cname')

The customer name and phone number are presented in alphabetical order.

DISPLAY VIEW(SEQUELEX/ORDERINQ) MSG(*NO)

The order inquiry view is displayed but status messages are suppressed.

2-66 Sequel 11 Programmer’s Guide - Command Reference

DLTAUDDTA (Delete Audit Data) Command

This command deletes information from the audit database files. It can be run interactively or in
a batch environment. You can run it by:

• using option 2 from the audit menu. A prompt display will appear and the command will run
interactively unless you press F14=Submit after typing the option number. If you choose to
submit it, the SBMJOB command defaults and your default job description will be used after
the prompt display is completed.

• entering or submitting the DLTAUDDTA command from a command entry line
The command syntax is shown below.

The command parameters define six ranges. Both the low and high values must be entered for
each pair that you want to use. Only the date range is required. Other ranges modify the date cri-
teria so that only the records that meet all specified criteria will be deleted.

FROMDATE Parameter

Specifies the lowest date to be used in selecting records to be deleted. Records with dates equal
to or higher than this value will be deleted. Specify the date according to your standard job date
(mm/dd/yy, yy/mm/dd, or dd/mm/yy) format.

*FIRST: The lowest date in the database will be used.

TODATE Parameter

Specifies the highest date to be used in selecting records to be deleted. Records with dates equal
to or lower than this value will be deleted. Specify the date according to your standard
job date (mm/dd/yy, yy/mm/dd, or dd/mm/yy) format.

*LAST: The highest date in the database will be used.

FROMTIME Parameter

Specifies the lowest time to be used in selecting records to be deleted. Records for requests with
a beginning time equal to or higher than this value will be deleted. Specify the time in hh:mm:ss
format. If you enter a value for this parameter, you must also enter a value for the TOTIME
parameter.

TOTIME Parameter

Specifies the highest time to be used in selecting records to be deleted. Records for requests with
a beginning time equal to or lower than this value will be deleted. Specify the time in hh:mm:ss
format. If you enter a value for this parameter, you must also enter a value for the FROMTIME
parameter.

DLTAUDDTA (Delete Audit Data) Command 2-67

FROMUSER Parameter

Specifies the lowest user profile value to be used in selecting records to be deleted. Records for
requests that were run by a user name equal to or alphabetically after this value will be deleted.
If you enter a value for this parameter, you must also enter a value for the TOUSER parameter.

TOUSER Parameter

Specifies the highest user profile value to be used in selecting records to be deleted. Records for
requests that were run by a user name equal to or alphabetically before this value will be deleted.
If you enter a value for this parameter, you must also enter a value for the FROMUSER parame-
ter.

FROMVIEW Parameter

Specifies the lowest view name value to be used in selecting records to be deleted. Records for
requests that were run using a view name equal to or alphabetically after this value will be
deleted. If you enter a value for this parameter, you must also enter a value for the TOVIEW
parameter.

TOVIEW Parameter

Specifies the highest view name value to be used in selecting records to be deleted. Records for
requests that were run using a view name equal to or alphabetically before this value will be
deleted. If you enter a value for this parameter, you must also enter a value for the FROMVIEW
parameter.

FROMRPT Parameter

Specifies the lowest report name value to be used in selecting records to be deleted. Records for
requests that were run using a report name equal to or alphabetically after this value will be
deleted. If you enter a value for this parameter, you must also enter a value for the TORPT
parameter.

TORPT Parameter

Specifies the highest report name value to be used in selecting records to be deleted. Records for
requests that were run using a report name equal to or alphabetically before this value will be
deleted. If you enter a value for this parameter, you must also enter a value for the FROMRPT
parameter.

FROMJOB Parameter

Specifies the lowest job name value to be used in selecting records to be deleted. Records for
requests that were run using a job name equal to or alphabetically after this value will be deleted.
If you enter a value for this parameter, you must also enter a value for the TOJOB parameter.

2-68 Sequel 11 Programmer’s Guide - Command Reference

TOJOB Parameter

Specifies the highest job name value to be used in selecting records to be deleted. Records for
requests that were run using a job name equal to or alphabetically before this value will be
deleted. If you enter a value for this parameter, you must also enter a value for the FROMJOB
parameter.

DSNREPORT (Design A Sequel Report) Command 2-69

DSNREPORT (Design A Sequel Report) Command

The report editor is accessed through the Design Report (DSNREPORT) command. It can be
entered directly from the command entry display, as a Work With Views (WRKVIEW) or Work
With Reports (WRKREPORT) option, or from a user selected menu system driven by standard
CL programming.

Using the Design Report command, you can create a new report or change an existing one.
DSNREPORT will also let you use an existing report as the starting point in creating a new one.
Refer to the description of the report editor in the ViewPoint User’s Guide for a complete under-
standing of its features and functions.

The Design Report command also lets you create and change the default layouts that can be
accessed from the report editor to create the initial report layout.

The command syntax for Design Report is shown below.

You may override the view used with an existing report by specifying a view name or SQL state-
ment on the DSNREPORT command. If the report is saved with this new information, all future
executions of the report will refer to it.

REPORT Parameter

Specifies the name and library of the report to be created or changed by the report editor. The
library must already exist and the user space, if named, must exist within the library. You must
have operational (*OBJOPR) and insert (*ADD) authority to the library in order to place a
report into it. If *LIBL is specified for a library name, your library list is searched for a report
with the name you have given.

*CREATE: indicates you are creating a new report from the view or SQL statement. If you
specify *CREATE for the report name, you must also specify either a view name or an
SQL statement.

*DEFAULT: indicates that you want to change one of the special default report definitions
that can be referenced when you create a new report. Refer to page 2-71 for information
about creating and changing default report definitions.

SQL Parameter

This is the SQL statement that the report will be based on. It will be used when the report is run
to acquire database records. If you specify an SQL statement you cannot also specify a view
name. A temporary view named SQLEXEC in the QTEMP library is created prior to starting the
report editor. This view is automatically deleted when the command completes.

VIEW Parameter

Identifies the view to be used when the report is edited and run. As with other Sequel commands,
you can specify either an SQL statement or a view name, not both. If *LIBL is specified for a
library name, your library list is searched for a view with the name you have given.

2-70 Sequel 11 Programmer’s Guide - Command Reference

*RPT: may be used if you are changing an existing report and you wish to continue
using the view included with the report the last time it was edited.

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

AUT Parameter

Specifies the authority given to the users who have no specific authority to the report and with-
out specific authority granted to their user profile group.

*SAME: retains the current public authority for the report.

*LIBCRTAUT:the authority for the report is taken from the value specified on the Create
authority (CRTAUT) Parameter of the library into which the report is being created.

*USE: allows other users to examine and run the report.

*ALL: allows others to examine, run, change, and delete the report.

*EXCLUDE: prevents other users from accessing the report in any way.

Examples

DSNREPORT REPORT(ORDERINQR)

Begin editing the ORDERINQR report which is on the library list. The view originally used to
design the report will also be used during this editing session.

DSNREPORT REPORT(*CREATE) VIEW(SEQUELEX/CUSTLIST)

A new report is to be created using the CUSTLIST view in the SEQUELEX library.

DSNREPORT *CREATE SQL('SELECT salno,cusno,cname,amtdu

FROM custmast ORDER BY salno')

DSNREPORT (Design A Sequel Report) Command 2-71

Create a new report using the SQL statement as a source of view information. The temporary
view QTEMP/SQLEXEC will be created during the report editing session and also when the
report is run.

DSNREPORT *DEFAULT

Use this command to indicate that you want to create or change the specifications for one of the
default report formats.

Creating and changing default layouts

The default formats can be referenced when you are creating a new report. After entering this
command, you will see a display that looks like this:

You can choose to modify and delete existing formats, or create a new format based on an exist-
ing one or from the *AUTO initial format.

Select an existing format for modification by placing a 1 next to its name on the display. Delete a
format by placing a 4 next to its name. Press Enter to carry out your selection.

If you want to create a new format from the *AUTO initial layout, type a Y next to “New
default:” at the top of the display, specify the width of the default you want to create and press
Enter.

After you have made your selection, you will see the “Formatting report for display” message at
the bottom of your display, followed by the familiar report design screen.

2-72 Sequel 11 Programmer’s Guide - Command Reference

The report design display allows you to use all of the standard formatting functions to create,
move and delete literals and fields from the layout. You will notice that only the @HEADING
format is represented on the display. You can place any of the following fields into the default
format:

@@DATE Job Date (2 digit year) @@CMPNAM Company Name
@@DATEC Job Date (Long) @@PAGE System Page
@@DATE1 Job Date (4 digit year) @@LDA Local Data Area
@@SYSDATE System Date (2 digit yr) @@VIEWNAM View Name
@@DAY System Day (Number) @@RPTNAM Report Name
@@DAYC System Day (Alpha) @@TIME System Time
@@MONTH System Month (Num) @@TITLE Report Title
@@MONTHC System Month (Char) @@USER User Profile
@@YEAR System Year @@JOB Job Name
@@SYSDATE1 System Date (4 digit yr) @@JOBNBR Job Number

When you have finished working with the selected format, press F3. A modified report defini-
tion exit display will appear. It should be similar to this:

You can change the name of the layout to be created and enter up to 50 characters of text that
will be associated with the default layout name.

You can also adjust the width of the default header. An error will result and you will be notified
if there are fields that end past the width that you have specified.

Create or update the named default layout by pressing Enter. Use F3 to exit without saving your
changes, or use F12 to return to the editing display.

DSNSCRIPT (Design a Sequel Script) Command 2-73

DSNSCRIPT (Design a Sequel Script) Command

The script editor is started through the Design Script (DSNSCRIPT) command. It can entered
directly from the command entry display, at a Work With Script (WRKSCRIPT) option, or from
a user selected menu system driven by standard CL programming.

Using the Design Script command, you can create a new script definition or change an existing
one. DSNSCRIPT will also let you use an existing script definition as the starting point in creat-
ing a new script. Refer to the ViewPoint Users Guide for a description of the script editor and its
features and functions.

Command Parameters are identical to those required by the Create Script (CRTSCRIPT) com-
mand with the exception of the Date Style (DTSTYLE) Parameter. If you are changing an exist-
ing script, you can override values specified on the CRTSCRIPT definition and indicate new
values to be used.

The Parameter default of *SAME indicates that values supplied when the script was created will
apply during this execution.

SCRIPT Parameter

Indicates whether you want to work with an existing script or create a new one.

*CREATE: specifies that you want to create a new script. The script editor screen will dis-
play and allow you to begin designing your script.

*CREATEV: specifies that you want to create a new script view. The user interface will pro-
ceed directly to the main entry display and allow you to begin designing your script
view. Script views are restricted from using DISPLAY, TABLE and REPORT com-
mands and must end with the SCRETURN command (page 2-173).

Script name: lets you change an existing script. The script editor screen will appear showing
the current script definition. If you are not certain of the name of the script you want to
use and would like help selecting it, use the WRKSCRIPT command.

*LIBL: indicates that you want Sequel to search your library list for the script you spec-
ified.

SRCF Parameter

Indicates the name and library of the source file that contains the member with the command
statements to import into a script definition when using *CREATE for the script Parameter. The
script editor will be displayed. The source file must exist.

Source File Name

*NONE: indicates that the source file option is not used. The user interface is displayed
without any data

*ALL: indicates that all the source files in the selected library will be displayed.

*SELECT: same as *ALL

2-74 Sequel 11 Programmer’s Guide - Command Reference

generic*: indicates that all the source files with the same leading generic name in the
selected library will be displayed for selection.

file-name: the name of the source file in the selected library that contains the member
selected in the SRCM Parameter.

Source File Library

*LIBL: indicates that the current library list will be searched for the source file indi-
cated.

*CURLIB: indicates that the current library will be searched for the source file indicated. If
the user does not have a current library assigned, QGPL is used instead.

SRCMBR Parameter

Indicates the name of the source member that contains the command statements to import into a
script definition. The source member must exist.

*SELECT: indicates that all the source members in the selected source file will be dis-
played for selection.

*ALL: same as *SELECT

member-name: the name of the member in the selected file.

TEXT Parameter

Allows up to 50 characters to be associated with the script. It is attached to the User Space and
serves as documentation for the script. Variable names used in a script title are not substituted
from a runtime prompt and are treated as part of the title.

*SAME: uses the title of the script when designing and existing script. The title is blank
when using *CREATE for script name.

AUT Parameter

Specifies the authority given to the users who have no specific authority to the view and without
specific authority granted to their user profile group. Each time the script is saved, the authority
will be reset.

*SETDFT: the authority for the script is taken from the user defaults.

*LIBCRTAUT:the authority for the script is taken from the value specified on the Create
authority (CRTAUT) Parameter of the library into which the script is being created.

*USE: allows other users to examine and run the script.

*ALL: allows others to examine, run, change, and delete the script.

*EXCLUDE: prevents other users from accessing the script in any way.

DSNSCRIPT (Design a Sequel Script) Command 2-75

DTSTYLE Parameter

Specifies the “preferred” style for date and time variables when running the script from the script
edit screen. All DATE variable values, when run from DSNSCRIPT, must conform to the format
indicated by the DTSTYLE Parameter. The DTSTYLE of DSNSCRIPT must match the
DTSTYLE of any Sequel command used in the script.

The default value, *JOB, indicates that the current format specified for your job will be used as
the preferred date format for the date/time values returned by the view. Other values are *USA,
*ISO, *EUR, *JIS, *MDY, *DMY, *YMD, *JUL, *JL1, and *SETDFT.

Four values are provided by the DTSTYLE Parameter. They are:

Date format
Date separator
Time format
Time separator

Examples

DSNSCRIPT *CREATE

Use the command above to create a new script without starting from existing script. An “empty”
script editor screen will be shown.

DSNSCRIPT SCRIPT(SEQUELEX/CUSTORDS)

This command starts the script editor and begins editing the CUSTORDS script in the
SEQUELEX library. Specifying a script is useful when you want to change the script, or if you
want to create a new script that is similar to an exiting one.

DSNSCRIPT SCRIPT(*CREATE) SRCF(SEQUELEX/SOURCE) SRCMBR(RUNTIME5)

This command will import the CL source into the script editor. Any statements not supported by
scripting will be commented out.

2-76 Sequel 11 Programmer’s Guide - Command Reference

DSNTABLE (Design A Sequel Table) Command

The table editor is started through the Design Table (DSNTABLE) command. It can be entered
directly from the command entry display, as a Work With Views (WRKVIEW) option, or from a
user selected menu system driven by standard CL programming.

Using the Design Table command, you can create a new table definition or change an existing
one. DSNTABLE will also let you use an existing definition as the starting point in creating a
new one. Refer to the ViewPoint User’s Guide the description of the table editor for a complete
understanding of its features and functions.

The command syntax for Design Table is shown below.

You may override the view used with an existing table by specifying a view name or SQL state-
ment on the DSNTABLE command. If the table is saved with this new information, all future
executions of the table will refer to it.

TABLE Parameter

Specifies the name and library of the table definition to be created or changed by the table editor.
The library must already exist and the user space, if named, must exist within the library. You
must have operational (*OBJOPR) and insert (*ADD) authority to the library in order to place a
table definition into it. If *LIBL is specified for a library name, your library list is searched for a
tabling view (SQLTBLV) with the name you have given.

*CREATE: indicates you are creating a new table definition from the view or SQL state-
ment. If you specify *CREATE for the table name, you must also specify either a view
name or an SQL statement.

SQL Parameter

This is the SQL statement that the table will be based on. It will be used when the table is run to
acquire database records. If you specify an SQL statement you cannot also specify a view name.
A temporary view named SQLEXEC in the QTEMP library is created prior to starting the table
editor. This view is automatically deleted when the command completes.

VIEW Parameter

Identifies the view to be used when the table definition is edited and run. As with other Sequel
commands, you can specify either an SQL statement or a view name, not both. If *LIBL is spec-
ified for a library name, your library list is searched for a view with the name you have given.

*TBL:may be used if you are changing an existing table definition and you wish to continue
using the view included with the table the last time it was edited.

DSNTABLE (Design A Sequel Table) Command 2-77

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

AUT Parameter

Specifies the authority given to the users who have no specific authority to the table definition
and no specific authority granted to their user profile group.

*SAME: retains the current public authority for the table definition.

*LIBCRTAUT:the authority for the table definition is taken from the value specified on the
Create authority (CRTAUT) Parameter of the library into which the tabling view is
being created.

*USE: allows other users to examine and run the table.

*ALL: allows others to examine, run, change, and delete the table.

*EXCLUDE: prevents other users from accessing the table in any way.

Examples

DSNTABLE TABLE(ORDERINQT)

Begin editing the ORDERINQT table definition which is on the library list. The view originally
used to design the table will also be used during this editing session.

DSNTABLE TABLE(*CREATE) VIEW(SEQUELEX/CUSTLIST)

A new table definition is to be created using the CUSTLIST view in the SEQUELEX library.

DSNTABLE *CREATE SQL('SELECT salno,cusno,cname,amtdu
 FROM custmast ORDER BY salno')

Create a new table definition using the SQL statement as a source for database. The temporary
view QTEMP/SQLEXEC will be created during the table editing session and also when the table
is run.

2-78 Sequel 11 Programmer’s Guide - Command Reference

DSNVIEW (Design A Sequel View) Command

The DSNVIEW command starts the Sequel user interface so that you can interactively create,
change and run views using Sequel syntax. The command can be entered directly from the com-
mand entry display, as an option from the “Work With” display (WRKSEQUEL), or from a user
selected menu system driven by standard CL programming. Refer to the ViewPoint User’s
Guide for complete information about the functions of the view editor.

With the exception of the SERVER parameter, all other parameters on the DSNVIEW command
are identical to those required by the Create View (CRTVIEW) command on page 2-37.

The Parameter default of *SAME indicates that values supplied when the view was created will
apply during this execution. If an SQL statement is supplied on the command, values for Param-
eters you do not specify default to those supplied with the CRTVIEW command. Refer to the
description of CRTVIEW starting on page 2-37 for a complete explanation of each Parameter.

VIEW Parameter

Indicates whether you want to work with an existing view or create a new one.

*CREATE: Specifies that you want to create a new view. The user interface will proceed
directly to the main entry display and allow you to begin designing your SQL statement.

view name: Allows you change an existing view. The main entry display will appear show-
ing the current SQL definition for the view. If you are not certain of the name of the
view you want to use and would like help selecting it, use the WRKVIEW command.

*LIBL: Indicates that you want Sequel to search your library list for the view you speci-
fied.

SERVER Parameter

Use this parameter to specify the target database for the request.

*SAME: The server specified when the view was created will process the request. If
*CREATE is specified for the VIEW parameter, then *LOCALSYS will be used if the
user's Sequel Default database is *LOCALSYS, otherwise *SEQUEL will be used. If an
SQL statement is specified, then the request will be processed on the local machine by
the Classic Query Engine (CQE) using *SEQUEL syntax.

*SEQUEL: The view or SQL statement contains Sequel statement syntax and the request
will be processed on the local machine using Sequel.

*LOCALSYS: The view or SQL statement will be opened in the User Interface and the request
will be processed using the SQE. Only *SEQUEL syntax is supported.

DSNVIEW (Design A Sequel View) Command 2-79

Examples

DSNVIEW *CREATE

Use the command above to create a new query without starting from an existing view. An
“empty” SQL statement will be shown on the view definition display.

DSNVIEW VIEW(SEQUELEX/CUSTLIST)

This command starts the user interface and begins editing the CUSTLIST view in the
SEQUELEX library. Specifying a view is useful when you want to change the view, or if you
want to create a new query that is similar to an existing one.

2-80 Sequel 11 Programmer’s Guide - Command Reference

DSPDASHD (Display Dashboard Description) Command

The Display Dashboard Description (DSPDASHD) command lets you document the dashboards
on your system. It retrieves information about the objects in the dashboard and routes them to
the workstation, printer, or a file. The command can also be used to document the objects refer-
enced by the dashboard.

DASHBOARD Parameter

The DASHBOARD keyword indicates which view(s) you wish to process. All dashboards meet-
ing the criteria will be included in the output. You must have *USE authority to each dashboard
that is selected.

Dashboard Name:

*ALL: All dashboards in the selected library are chosen.

Generic*: Dashboards meeting the generic criteria are chosen. Enter the beginning portion
of the object name and append an asterisk.

Object-name: Specific dashboard name

Library Name:

*CURLIB: The job’s current library (*CURLIB) will be searched for dashboards.

*LIBL: The current job library list will be searched for the dashboard(s).

*ALL: All libraries on the system will be searched for the dashboard(s).

*ALLUSR: All user libraries (those not beginning with the letter “Q”) will be searched for
the dashboard(s).

*USRLIBL: Libraries on the user portion of your library list will be searched for the dash-
board(s).

Library-name: Specific library name

TYPE Parameter

Indicates what kind of information about the dashboard(s) is returned by the command. Specify:

*ALL: All information about the dashboard is returned.

*BASIC: Only dashboard name and location information is returned.

*DBREF: Information indicating the objects referenced by the dashboard is returned. This
option is only valid when OUTPUT(*OUTFILE) is specified.

DSPDASHD (Display Dashboard Description) Command 2-81

OUTPUT Parameter

Indicates where the results of the command should be routed. Specify:

*: Information will be displayed at the workstation. If this option is chosen,
TYPE(*ALL) must also be specified.

*PRINT: Information will be spooled to a printer file for printing. If this option is chosen,
TYPE(*ALL) must also be specified.

*OUTFILE: Information will be sent to a database file for output. You cannot specify
TYPE(*ALL) if you choose to direct command output to a database file.

OUTFILE Parameter

Specifies the name of the database file to receive output from the command. The file name must
be specified and you must have proper data rights to add records to it. You can specify one of
two special values for the library name:

*CURLIB: The current library will be used to locate the file. If it is not found, the output
file will be created in the current library.

*LIBL: Using *LIBL as a library name causes your library list to be searched for the
indicated file.

If the outfile does not exist prior to execution, DSPDASHD will create it unless *LIBL is speci-
fied for the file’s library. A “pattern” outfile in the Sequel library supplies information
regarding the size, allocation Parameters, and maximum number of members allowed.
The files are:

VDBASIC Basic information
VDDBREF Database references

You can alter the characteristics of Sequel created output files by using the Change Physical File
(CHGPF) command on the appropriate pattern file. If TYPE(*SRC) is specified, the Create
Source Physical File (CRTSRCPF) command will be used to create a source file matching the
name specified by the OUTFILE Parameter.

OUTMBR Parameter

Specifies the name of the database file member(s) to which the output of the dashboard is
directed. If TYPE(*SRC) is specified, the Create View (CRTVIEW) command for each
view that is processed will be placed into the member(s) indicated. Specify:

*FIRST: output is directed to the first member in the file. If this value is specified and the
member does not exist, Sequel creates a member with the same name as the file speci-
fied in the OUTFILE Parameter.

member-name:output is directed to the named member in the file. If the member does not exist,
it will be added to the file.

2-82 Sequel 11 Programmer’s Guide - Command Reference

MBROPT Parameter

If the output file exists before the DSPDASHD command is issued, this keyword indicates if
records in the file will be cleared or whether the dashboard data will be appended to the existing
member instead.

*REPLACE: existing records will be cleared from the output member prior to inserting new
information.

*ADD: records currently in the member are retained and new records will be added to
them.

PAGESIZE Parameter

Specifies the size of the paper the dashboard will print on. Indicate the height of the page in lines
(up to 99) and the width of the paper in columns (up to 378). The default size is 66 lines long and
132 columns wide.

LPI Parameter

Many printers are capable of printing with various vertical densities. This keyword controls the
number of lines per inch (LPI) which will be printed on the page. Standard values are 6 and 8;
your printer may allow others. The default is 6 lines per inch.

CPI Parameter

Controls the horizontal print density by indicating the number of characters per inch (CPI) to be
printed on a line. Standard values are 10, 12, and 15; your printer may allow others. Specify a
CPI value of 16.7 to create spooled output with a 16.7 CPI pitch. The default is 10 characters per
inch.

The logical size of the page is controlled by the combination of PAGESIZE and LPI/CPI values.
It is usually best to measure the physical paper size first, and then divide the dimensions by the
desired LPI and CPI values in order to arrive at the appropriate PAGESIZE dimensions.

OVRFLW Parameter

Controls the maximum number of lines that can appear on each page. It must be equal to or less
than the number of lines on the page given by the PAGESIZE keyword. A bottom margin can be
forced to appear on each page by setting the overflow value less than the page size. The default
overflow line is line 60.

OUTQ Parameter

Indicates an output queue to send printed output.

*SETDFT: The output queue is determined from the value defined in the Sequel user
defaults.

DSPDASHD (Display Dashboard Description) Command 2-83

*JOB: The output queue used by the job that is currently running is used for the sub-
mitted job.

*CURRENT: The output queue used by the job that is currently running is used for the sub-
mitted job. Same as *JOB.

*USRPRF: The output queue in the user profile where the job runs is used as the output
queue for the job. The output queue name is obtained from the profile when this com-
mand is run.

*DEV: The output queue associated with the printer specified on the DEV Parameter of
the printer file is used. The output queue has the same name as the printer. The printer
file DEV Parameter is determined by the Create Print File (CRTPRTF), Change Print
File (CHGPRTF), or the Override Print File (OVRPRTF) commands.

output-queue-name:Specify the name (output-queue-name) of the output queue that is used as
the default output queue by the job.

2-84 Sequel 11 Programmer’s Guide - Command Reference

DSPRPTD (Display Report Description) Command

The Display Report Description (DSPRPTD) command lets you document the reports on your
system. It can be used to direct the attributes of the report and its SQL statement to the worksta-
tion, printer, or a file.

REPORT Parameter

The REPORT keyword indicates which report(s) you wish to process. All reports meeting the
criteria will be included in the output. You must have *USE authority to each report that is
selected.

Report Name:

*ALL: All reports in the selected library are chosen.

Generic*: Reports meeting the generic criteria are chosen. Enter the beginning portion of
the object name and append an asterisk.

Object-name: Specific report name

Library Name:

*CURLIB: The job’s current library (*CURLIB) will be searched for reports.

*LIBL: The current job library list will be searched for the report(s).

*ALL: All libraries on the system will be searched for the report(s).

*ALLUSR: All user libraries (those not beginning with the letter “Q”) will be searched for
the report(s).

*USRLIBL: Libraries on the user portion of your library list will be searched for the
report(s).

Library-name: Specific library name

TYPE Parameter

Indicates what kind of information about the report(s) is returned by the command. Specify:

*BASIC: Only execution Parameters will be returned. The SQL statement will be
excluded.

*ALL: All information (execution Parameters and SQL statement should be returned.

*SQL: The SQL statement will be returned to the output file. Execution Parameters are
excluded.

DSPRPTD (Display Report Description) Command 2-85

OUTPUT Parameter

Indicates where the results of the command should be routed. Specify:

*: Information will be displayed at the workstation. If this option is chosen,
TYPE(*ALL) or TYPE(*BASIC) must also be specified.

*PRINT: Information will be spooled to a printer file for printing. If this option is chosen,
TYPE(*ALL) must also be specified.

*OUTFILE: Information will be sent to a database file for output. You cannot specify
TYPE(*ALL) if you choose to direct command output to a database file.

OUTFILE Parameter

Specifies the name of the database file to receive output from the command. The file name must
be specified and you must have proper data rights to add records to it. You can specify one of
two special values for the library name:

*CURLIB: The current library will be used to locate the file. If it is not found, the output
file will be created in the current library.

*LIBL: Using *LIBL as a library name causes your library list to be searched for the
indicated file.

If the outfile does not exist prior to execution, DSPRPTD will create it unless *LIBL is specified
for the file’s library. A “pattern” outfile in the Sequel library supplies information
regarding the size, allocation Parameters, and maximum number of members allowed.
The files are:

RDBASIC Basic information
RDSQL SQL statement definition

You can alter the characteristics of Sequel created output files by using the Change Physical File
(CHGPF) command on the appropriate pattern file.

OUTMBR Parameter

Specifies the name of the database file member to which the output of the report is directed.
Specify:

*FIRST: output is directed to the first member in the file. If this value is specified and the
member does not exist, Sequel creates a member with the same name as the file speci-
fied in the OUTFILE Parameter.

member-name:output is directed to the named member in the file. If the member does not exist,
it will be added to the file.

MBROPT Parameter

If the output file exists before the DSPRPTD command is issued, this keyword indicates if
records in the file will be cleared or whether the report data will be appended to the existing
member instead.

2-86 Sequel 11 Programmer’s Guide - Command Reference

*REPLACE: existing records will be cleared from the output member prior to inserting new
information.

*ADD: records currently in the member are retained and new records will be added to
them.

PAGESIZE Parameter

Specifies the size of the paper the report will print on. Indicate the height of the page in lines (up
to 99) and the width of the paper in columns (up to 378). The default size is 66 lines long and
132 columns wide.

OVRFLW Parameter

Controls the maximum number of lines that can appear on each page. It must be equal to or less
than the number of lines on the page given by the PAGESIZE keyword. A bottom margin can be
forced to appear on each page by setting the overflow value less than the page size. The default
overflow line is line 60.

LPI Parameter

Many printers are capable of printing with various vertical densities. This keyword controls the
number of lines per inch (LPI) which will be printed on the page. Standard values are 6 and 8;
your printer may allow others. The default is 6 lines per inch.

CPI Parameter

Controls the horizontal print density by indicating the number of characters per inch (CPI) to be
printed on a line. Standard values are 10, 12, and 15; your printer may allow others. Specify a
CPI value of 16.7 to create spooled output with a 16.7 CPI pitch. The default is 10 characters per
inch.

Note: The logical size of the page is controlled by the combination of PAGESIZE and LPI/CPI
values. It is usually best to measure the physical paper size first, and then divide the dimensions
by the desired LPI and CPI values in order to arrive at the appropriate PAGESIZE dimensions.

OUTFORM Parameter

Controls the level of formatting in the SQL statement.

*FMT: Print the SQL statement in a formatted, easy to read manner.

*UNFMT: Print the SQL statement without formatting.

DSPRPTD (Display Report Description) Command 2-87

Examples

DSPRPTD REPORT(SEQUELEX/*ALL)

The format definition (*BASIC) of all reports in the SEQUELEX library will be sent to the dis-
play.

DSPRPTD REPORT(*ALL/*ALL) TYPE(*BASIC)
 OUTPUT(*OUTFILE) OUTFILE(QTEMP/RPTDEF)

The basic information for all reports on the system will be placed into the file RPTDEF in the
QTEMP library. If the file does not exist, it will be created according to the template file RDBA-
SIC.

Sample results

The display below shows an example of the TYPE(*BASIC) result of the DSPRPTD command.
The basic information display lists only the report name, the view it is based on, and its descrip-
tive title.

Roll keys will scroll the list. You can adjust the number of lines scrolled on each request by spec-
ifying an appropriate value at the lower part of the display.

2-88 Sequel 11 Programmer’s Guide - Command Reference

Press F4 to switch between the display above and the expanded display. It presents all of the
report attributes and shows the library qualifiers for both the report and view names.

If you are using a 132 column display, you can switch between 80 and 132 column mode by
pressing F11. The 132 column display format shows most of the report attributes in addition to
the information above. An example is shown below:

You can switch between the 132 column display above and an expanded display showing the
view and report library by pressing F4.

Press F3 or F12 from any of the displays to exit the DSPRPTD command and return to your pre-
vious display.

DSPSCRIPTD (Display Script Definition) Command 2-89

DSPSCRIPTD (Display Script Definition) Command

The Display Script Definition (DSPSCRIPTD) command lets you display script definitions,
print script analysis, output scripts to source members or output variable definitions to a prefor-
matted file.

SCRIPT Parameter

The SCRIPT keyword indicates which script(s) you wish to process. All scripts meeting the cri-
teria will be included in the output. You must have *USE authority to each script that is selected

Script Name:

*ALL: All scripts in the selected library are chosen.

Generic*: Scripts meeting the generic criteria are chosen. Enter the beginning portion of
the object name and append an asterisk.

Object-name: Specific script name.

Library Name:

*LIBL: The current job library list will be searched for the script(s).

*USRLIBL: Libraries on the user portion of your library list will be searched for the
script(s).

*CURLIB: The job's current library (*CURLIB) will be searched for scripts

*ALLUSR: All user libraries (those not beginning with the letter "Q") will be searched for
the script(s).

*ALL: All libraries on the system will be searched for the script(s).

Library-name: Specific library name

ATTRIB Parameter

Indicates what kind of scripts you want included in the list. Specify:

ALL: All Sequel scripts matching the request should be used. This is the equivalent to
the SQLSCRIPT value.

SQLSCRIPT: Only non-prompted scripts (without variable definitions) will be returned.

SQLSCRIPTP:Only promptable scripts (with variable definitions) will be returned.

2-90 Sequel 11 Programmer’s Guide - Command Reference

TYPE Parameter

Indicates what kind of information about the script(s) is returned by the command. Specify:

*ALL: All information about the script will be returned. Any promptable scripts will
also have their variable specifications returned.

*SRC: The script statements will be placed into the source file named by the OUTFILE
and OUTMBR Parameter values.

*VSPEC: The variable specifications for the script will be returned. This option is only
valid when OUTPUT(*OUTFILE) is specified.

OUTPUT Parameter

Indicates where the results of the command should be routed. Specify:

*: Information will be displayed at the workstation. If this option is chosen,
TYPE(*ALL) must also be specified.

*PRINT: Information will be spooled to a printer file for printing. If this option is chosen,
TYPE(*ALL) must also be specified.

*OUTFILE: Information will be sent to a database file for output. You cannot specify
TYPE(*ALL) if you choose to direct command output to a database file.

OUTFILE Parameter

Specifies the name of the database file to receive output from the command. The file name must
be specified and you must have proper data rights to add records to it. You can specify one of
two special values for the library name:

*CURLIB: The current library will be used to locate the file. If it is not found, the output
file will be created in the current library.

*LIBL: Using *LIBL as a library name causes your library list to be searched for the
indicated file.

If the outfile does not exist prior to execution, DSPSCRIPTD will create it unless *LIBL is spec-
ified for the file’s library. A “pattern” outfile in the SEQUEL library supplies informa-
tion regarding the size, allocation Parameters, and maximum number of members
allowed. The file is:

VDVSPEC Variable specifications

You can alter the characteristics of Sequel created output files by using the Change Physical File
(CHGPF) command on the appropriate pattern file. If TYPE(*SRC) is specified, the
Create Source Physical File (CRTSRCPF) command will be used to create a source file
matching the name specified by the OUTFILE Parameter.

DSPSCRIPTD (Display Script Definition) Command 2-91

OUTMBR Parameter

Specifies the name of the database file member(s) to which the output of the script is directed. If
TYPE(*SRC) is specified, the Create Script (CRTSCRIPT) command for each script that is pro-
cessed will be placed into the member(s) indicated. Specify:

*SCRIPT: output is directed to a member in the source file having the same name as the
script being displayed. If this value is specified and the member does not exist, Sequel
creates a member with the same name as the script being displayed. If
OUTMBR(*SCRIPT) is specified, TYPE(*SRC) must also be specified.

*FIRST: output is directed to the first member in the file. If this value is specified and the
member does not exist, Sequel creates a member with the same name as the file speci-
fied in the OUTFILE Parameter.

member-name:output is directed to the named member in the file. If the member does not exist,
it will be added to the file.

PAGESIZE Parameter

Specifies the size of the paper the view will print on. Indicate the height of the page in lines (up
to 99) and the width of the paper in columns (up to 378). The default size is 66 lines long and
132 columns wide.

OVRFLW Parameter

Controls the maximum number of lines that can appear on each page. It must be equal to or less
than the number of lines on the page given by the PAGESIZE keyword. A bottom margin can be
forced to appear on each page by setting the overflow value less than the page size. The default
overflow line is line 60.

LPI Parameter

Many printers are capable of printing with various vertical densities. This keyword controls the
number of lines per inch (LPI) which will be printed on the page. Standard values are 6 and 8;
your printer may allow others. The default is 6 lines per inch.

CPI Parameter

Controls the horizontal print density by indicating the number of characters per inch (CPI) to be
printed on a line. Standard values are 10, 12, and 15; your printer may allow others. Specify a
CPI value of 16.7 to create spooled output with a 16.7 CPI pitch. The default is 10 characters per
inch.

Note: The logical size of the page is controlled by the combination of PAGESIZE and LPI/CPI
values. It is usually best to measure the physical paper size first, and then divide the dimensions
by the desired LPI and CPI values in order to arrive at the appropriate PAGESIZE dimensions.

2-92 Sequel 11 Programmer’s Guide - Command Reference

OUTQ Parameter

Indicates an output queue to send printed output.

*SETDFT: The output queue is determined from the value defined in the Sequel user
defaults.

*JOB: The output queue used by the job that is currently running is used for the sub-
mitted job.

*CURRENT: The output queue used by the job that is currently running is used for the sub-
mitted job. Same as *JOB.

*USRPRF: The output queue in the user profile where the job runs is used as the output
queue for the job. The output queue name is obtained from the profile when this com-
mand is run.

*DEV: The output queue associated with the printer specified on the DEV Parameter of
the printer file is used. The output queue has the same name as the printer. The printer
file DEV Parameter is determined by the Create Print File (CRTPRTF), Change Print
File (CHGPRTF), or the Override Print File (OVRPRTF) commands.

output-queue-name:Specify the name (output-queue-name) of the output queue that is used as
the default output queue by the job.

Examples

DSPSCRIPTD SCRIPT(SEQUELEX/*ALL)

The definition of all scripts in the SEQUELEX library will be sent to the display

DSPSCRIPTD SCRIPT(MYLIB/*ALL) TYPE(*SRC) OUTPUT(*OUTFILE)
 OUTFILE(SRCLIB/SCRIPTS) OUTMBR(*SCRIPT)

The script statements are copied to a source member and can be used to re-create the script from
source. Each script in library MYLIB will be copied into the source file named SCRIPTS in the
SRCLIB library. Each script definition will be placed into a separate member in the file.

DSPSCRIPTD SCRIPT(SEQUELEX/*ALL) TYPE(*VSPEC) OUTPUT(*OUTFILE)
 OUTFILE(QTEMP/VSPEC) OUTMBR(VSPEC1) MBROPT(*ADD)

The Variable Specifications for all Runtime scripts in library SEQUELEX are added to QTEMP/
VSPEC member VSPEC1.

DSPTBLD (Display Table Description) Command 2-93

DSPTBLD (Display Table Description) Command

The Display Table Description (DSPTBLD) command lets you document the tabling views on
your system. It retrieves the SQL statement and/or view creation Parameters (OPTIMIZE,
JTYPE, etc.) and routes them to the workstation, printer, or a file. The command can also be
used to document the database files referenced by the view.

TABLE Parameter

The TABLE keyword indicates which tabling view(s) you wish to process. All views meeting
the criteria will be included in the output. You must have *USE authority to each table definition
that is selected.

Tabling view Name:

*ALL: All tabling views in the selected library are chosen.

Generic*: Tabling views meeting the generic criteria are chosen. Enter the beginning por-
tion of the object name and append an asterisk.

Object-name: Specific tabling view name

Library Name:

*CURLIB: The job’s current library (*CURLIB) will be searched for tabling views.

*LIBL: The current job library list will be searched for the tabling view(s).

*ALL: All libraries on the system will be searched for the tabling view(s).

*ALLUSR: All user libraries (those not beginning with the letter “Q”) will be searched for
the tabling view(s).

*USRLIBL: Libraries on the user portion of your library list will be searched for the tabling
view(s).

Library-name: Specific library name

ATTRIB Parameter

Indicates what kind of views you want included in the list. Specify:

*ALL: All views matching the name criteria given by the VIEW Parameter should be
returned. This is equivalent to the SQLVIEW* value.

SQLVIEW: Only non-promptable views (without variable definitions) will be returned.

SQLVIEWP: Only promptable views (with variable definitions) will be returned.

SQLVIEWM: Only non-promptable remote database views (without variable definitions) will
be returned.

SQLVIEWMP:Only promptable remote database views (with variable definitions) will be
returned.

2-94 Sequel 11 Programmer’s Guide - Command Reference

TYPE Parameter

Indicates what kind of information about the tabling view(s) is returned by the command. Spec-
ify:

*ALL: All information should be returned. This is the only valid choice if output is
directed to the display or printer.

*BASIC: Cross reference information relating the table definition to its underlying view
will be directed to the indicated outfile.

*SQL: The SQL statement will be directed to the indicated output file.

*DBREF: Database reference information indicating the files, members, and formats ref-
erenced by the underlying view is returned. This option is only valid when OUT-
PUT(*OUTFILE) is specified.

OUTPUT Parameter

Indicates where the results of the command should be routed. Specify:

*: Information will be displayed at the workstation. If this option is chosen,
TYPE(*ALL) must also be specified.

*PRINT: Information will be spooled to a printer file for printing. If this option is chosen,
TYPE(*ALL) must also be specified.

*OUTFILE: Information will be sent to a database file for output. You cannot specify
TYPE(*ALL) if you choose to direct command output to a database file.

OUTFILE Parameter

Specifies the name of the database file to receive output from the command. The file name must
be specified and you must have proper data rights to add records to it. You can specify one of
two special values for the library name:

*CURLIB: The current library will be used to locate the file. If it is not found, the output
file will be created in the current library.

*LIBL: Using *LIBL as a library name causes your library list to be searched for the
indicated file.

If the outfile does not exist prior to execution, DSPTBLD will create it unless *LIBL is specified
for the file’s library. A “pattern” outfile in the SEQUEL library supplies information
regarding the size, allocation Parameters, and maximum number of members allowed.
The files are:

TDBASIC Basic information about the underlying view
TDSQL SQL statement definition
VDDBREF Database references

You can alter the characteristics of Sequel created output files by using the Change Physical File
(CHGPF) command on the appropriate pattern file.

DSPTBLD (Display Table Description) Command 2-95

OUTMBR Parameter

Specifies the name of the database file member(s) to which the output of the view is directed.
Specify:

*FIRST: output is directed to the first member in the file. If this value is specified and the
member does not exist, Sequel creates a member with the same name as the file speci-
fied in the OUTFILE Parameter.

member-name:output is directed to the named member in the file. If the member does not exist,
it will be added to the file.

MBROPT Parameter

If the output file exists before the DSPTBLD command is issued, this keyword indicates if
records in the file will be cleared or whether the view data will be appended to the existing mem-
ber instead.

*REPLACE: existing records will be cleared from the output member prior to inserting new
information.

*ADD: records currently in the member are retained and new records will be added to
them.

PAGESIZE Parameter

Specifies the size of the paper the view will print on. Indicate the height of the page in lines (up
to 99) and the width of the paper in columns (up to 378). The default size is 66 lines long and
132 columns wide.

OVRFLW Parameter

Controls the maximum number of lines that can appear on each page. It must be equal to or less
than the number of lines on the page given by the PAGESIZE keyword. A bottom margin can be
forced to appear on each page by setting the overflow value less than the page size. The default
overflow line is line 60.

LPI Parameter

Many printers are capable of printing with various vertical densities. This keyword controls the
number of lines per inch (LPI) which will be printed on the page. Standard values are 6 and 8;
your printer may allow others. The default is 6 lines per inch.

CPI Parameter

Controls the horizontal print density by indicating the number of characters per inch (CPI) to be
printed on a line. Standard values are 10, 12, and 15; your printer may allow others. Specify a
CPI value of 16.7 to create spooled output with a 16.7 CPI pitch. The default is 10 characters per
inch.

2-96 Sequel 11 Programmer’s Guide - Command Reference

The logical size of the page is controlled by the combination of PAGESIZE and LPI/CPI values.
It is usually best to measure the physical paper size first, and then divide the dimensions by the
desired LPI and CPI values in order to arrive at the appropriate PAGESIZE dimensions.

Examples

DSPTBLD TABLE(SEQUELEX/*ALL)

The definition of all tabling views in the SEQUELEX library will be sent to the display.

DSPVIEWD (Display View Description) Command 2-97

DSPVIEWD (Display View Description) Command

The Display View Description (DSPVIEWD) command lets you document the views on your
system. It retrieves the SQL statement and/or view creation Parameters (OPTIMIZE, JTYPE,
etc.) and routes them to the workstation, printer, or a file. The command can also be used to doc-
ument the database files referenced by the view.

VIEW Parameter

The VIEW keyword indicates which view(s) you wish to process. All views meeting the criteria
will be included in the output. You must have *USE authority to each view that is selected.

View Name:

*ALL: All views in the selected library are chosen.

Generic*: Views meeting the generic criteria are chosen. Enter the beginning portion of
the object name and append an asterisk.

Object-name: Specific view name

Library Name:

*CURLIB: The job’s current library (*CURLIB) will be searched for views.

*LIBL: The current job library list will be searched for the view(s).

*ALL: All libraries on the system will be searched for the view(s).

*ALLUSR: All user libraries (those not beginning with the letter “Q”) will be searched for
the view(s).

*USRLIBL: Libraries on the user portion of your library list will be searched for the view(s).

Library-name: Specific library name

ATTRIB Parameter

Indicates what kind of views you want included in the list. Specify:

*ALL: All views matching the name criteria given by the VIEW Parameter should be
returned. This is equivalent to the SQLVIEW* value.

SQLVIEW: Only non-promptable views (without variable definitions) will be returned.

SQLVIEWP: Only promptable views (with variable definitions) will be returned.

SQLVIEWM: Only non-promptable remote database views (without variable definitions) will
be returned.

SQLVIEWMP:Only promptable remote database views (with variable definitions) will be
returned.

2-98 Sequel 11 Programmer’s Guide - Command Reference

TYPE Parameter

Indicates what kind of information about the view(s) is returned by the command. Specify:

*ALL: All information (execution Parameters and SQL statement should be returned.

*BASIC: Only execution Parameters will be returned. The SQL statement will be
excluded.

*INFO: Display descriptive information about the view.

*SQL: The SQL statement will be returned. Execution Parameters are excluded.

*SRC: The CL command necessary to create the view will be placed into the source
file named by the OUTFILE and OUTMBR Parameter values. If TYPE(*SRC) is speci-
fied, OUTPUT(*OUTFILE) and valid output file and member names must also be spec-
ified.

*VSPEC: The variable specifications for the view will be returned. This option is only
valid when OUTPUT(*OUTFILE) is specified.

*DBREF: Database reference information indicating the files, members, and formats ref-
erenced by the view is returned. This option is only valid when OUTPUT(*OUTFILE)
is specified.

OUTPUT Parameter

Indicates where the results of the command should be routed. Specify:

*: Information will be displayed at the workstation. If this option is chosen,
TYPE(*ALL) must also be specified.

*PRINT: Information will be spooled to a printer file for printing. If this option is chosen,
TYPE(*ALL) must also be specified.

*OUTFILE: Information will be sent to a database file for output. You cannot specify
TYPE(*ALL) if you choose to direct command output to a database file.

OUTFILE Parameter

Specifies the name of the database file to receive output from the command. The file name must
be specified and you must have proper data rights to add records to it. You can specify one of
two special values for the library name:

*CURLIB: The current library will be used to locate the file. If it is not found, the output
file will be created in the current library.

*LIBL: Using *LIBL as a library name causes your library list to be searched for the
indicated file.

If the outfile does not exist prior to execution, DSPVIEWD will create it unless *LIBL is speci-
fied for the file’s library. A “pattern” outfile in the SEQUEL library supplies information
regarding the size, allocation Parameters, and maximum number of members allowed.
The files are:

DSPVIEWD (Display View Description) Command 2-99

VDBASIC Basic information
VDSQL SQL statement definition

VDVSPEC Variable specifications
VDDBREF Database references

You can alter the characteristics of Sequel created output files by using the Change Physical File
(CHGPF) command on the appropriate pattern file. If TYPE(*SRC) is specified, the Create
Source Physical File (CRTSRCPF) command will be used to create a source file matching the
name specified by the OUTFILE Parameter.

OUTMBR Parameter

Specifies the name of the database file member(s) to which the output of the view is directed. If
TYPE(*SRC) is specified, the Create View (CRTVIEW) command for each view that is
processed will be placed into the member(s) indicated. Specify:

*FIRST: output is directed to the first member in the file. If this value is specified and the
member does not exist, Sequel creates a member with the same name as the file speci-
fied in the OUTFILE Parameter.

*VIEW: output is directed to a member in the source file having the same name as the
view being displayed. If this value is specified and the member does not exist, Sequel
creates a member with the same name as the view being displayed. If
OUTMBR(*VIEW) is specified, TYPE(*SRC) must also be specified.

member-name:output is directed to the named member in the file. If the member does not exist,
it will be added to the file.

MBROPT Parameter

If the output file exists before the DSPVIEWD command is issued, this keyword indicates if
records in the file will be cleared or whether the view data will be appended to the existing mem-
ber instead.

*REPLACE: existing records will be cleared from the output member prior to inserting new
information.

*ADD: records currently in the member are retained and new records will be added to
them.

PAGESIZE Parameter

Specifies the size of the paper the view will print on. Indicate the height of the page in lines (up
to 99) and the width of the paper in columns (up to 378). The default size is 66 lines long and
132 columns wide.

OVRFLW Parameter

Controls the maximum number of lines that can appear on each page. It must be equal to or less
than the number of lines on the page given by the PAGESIZE keyword. A bottom margin can be

2-100 Sequel 11 Programmer’s Guide - Command Reference

forced to appear on each page by setting the overflow value less than the page size. The default
overflow line is line 60.

LPI Parameter

Many printers are capable of printing with various vertical densities. This keyword controls the
number of lines per inch (LPI) which will be printed on the page. Standard values are 6 and 8;
your printer may allow others. The default is 6 lines per inch.

CPI Parameter

Controls the horizontal print density by indicating the number of characters per inch (CPI) to be
printed on a line. Standard values are 10, 12, and 15; your printer may allow others. Specify a
CPI value of 16.7 to create spooled output with a 16.7 CPI pitch. The default is 10 characters per
inch.

The logical size of the page is controlled by the combination of PAGESIZE and LPI/CPI values.
It is usually best to measure the physical paper size first, and then divide the dimensions by the
desired LPI and CPI values in order to arrive at the appropriate PAGESIZE dimensions.

OUTFORM Parameter

Controls the level of formatting in the SQL statement.

*FMT: Print the SQL statement in a formatted, easy to read manner.

*UNFMT: Print the SQL statement without formatting.

Examples

DSPVIEWD VIEW(SEQUELEX/*ALL)

The definition of all views in the SEQUELEX library will be sent to the display.

DSPVIEWD VIEW(*ALL/*ALL) TYPE(*DBREF) OUTPUT(*OUTFILE)
 OUTFILE(QTEMP/DBREF)

The database references information for all views on the system will be placed into the file
DBREF in the QTEMP library. If the file does not exist, it will be created according to the tem-
plate file VDDBREF.

DSPVIEWD VIEW(*ALL/*ALL) TYPE(*SRC) UTPUT(*OUTFILE)
 OUTFILE(SRCLIB/VIEWS) OUTMBR(*VIEW)

The Create View (CRTVIEW) command necessary to create each view on the system will be
placed into the source file named VIEWS in the SRCLIB library. Each view definition will be
placed into a separate member in the file. A command to create a single member containing all
the view definitions would look like this:

DSPVIEWD (Display View Description) Command 2-101

DSPVIEWD VIEW(*ALL/*ALL) TYPE(*SRC) OUTPUT(*OUTFILE)
 OUTFILE(SRCLIB/VIEWS) OUTMBR(VIEWDEF)

2-102 Sequel 11 Programmer’s Guide - Command Reference

EXECUTE (Execute To A File) Command

The EXECUTE command places the results of a view into a database output file, shared folder
document, or IFS stream file. PC-formatted output can also be directed to an SMTP address and
sent as an e-mail message.

If output is sent to a database file, Sequel checks it for compatibility with the view. If compati-
ble, the new data can replace or be appended to any existing records in the file.

In addition, Sequel can create an empty outfile containing no records, but having the format of
the view. The file can be used in compiling a HLL program that will use the Open SQL File
(OPNSQLF) command. Refer to the section beginning page 4-24 for more information.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created from the statement
prior to processing. This view is automatically deleted when the command completes.

Many command parameters are identical to those required by the Create View (CRTVIEW)
command (page 2-37). Parameters specific to the EXECUTE command are detailed below.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

OUTFILE Parameter

Specifies the name of the database file to which the output is directed. If the outfile does not
exist when the command is run, it will be created automatically. If the file is created by the com-
mand, the view’s object text, will be used as file object text. If an SQL statement is supplied to
the command, the value of the TEXT Parameter will determine the new file’s text.

A “pattern” outfile named SQLEXEC in the SEQUEL library supplies information regarding the
size, allocation Parameters, and maximum number of members allowed. You can alter the char-
acteristics of Sequel created output files by using the Change Physical File (CHGPF) command
on the SEQUEL/SQLEXEC file.

Either an output file or a PC document must be specified by the command. You cannot specify
that you want output place in both an output file and a PC document during a single use of the
EXECUTE command.

*CURLIB: The current library will be used to locate the file. If it is not found, the output
file will be created in the current library.

*LIBL: Using *LIBL as a library name causes your library list to be searched for the file
you indicate. If it is not found, the output file will be created in your QTEMP library.

EXECUTE (Execute To A File) Command 2-103

OUTMBR Parameter

Specifies the name of the database file member to which the output of the view is directed. If a
new member is created, member text will be the text supplied with the view or specified on the
TEXT Parameter.

*FIRST: output is directed to the first member in the file. If this value is specified and the
member does not exist, Sequel creates a member with the same name as the file speci-
fied in the OUTFILE Parameter.

member-name:output is directed to the named member in the file. If the member does not exist,
it will be added to the file.

MBROPT Parameter

If the output file exists before the command is issued, this keyword indicates if records in the file
will be cleared prior to executing the query or whether the view data will be appended to the
existing records instead.

*REPLACE: existing records are cleared from the output member and replaced with records
from the query view.

*ADD: records currently in the member are retained and records from this view are
added to them.

NBRRCDS Parameter

Controls the number of records placed into the output file. It does not control the number of
records used in searching for output records, nor does it shorten any time necessary to build an
access path to process your request.

*ALL: the entire result will be placed in the outfile member.

*NONE: the file will be created (and optionally cleared) but no query records will be put
in the member. This option can be useful when creating a "format file" so that a HLL
program can be compiled in preparation for using OPNSQLF.

number: Specifies the maximum number of records to be placed in the output member.

RCDFMT Parameter

If a new file is created, Sequel will create a new format for your output file and give it the name
indicated by the RCDFMT Parameter.

VIEWFMT: the default record format name for Sequel created formats.

format-name: a valid name to identify the created format.

When creating Excel output, the worksheet will be named based on the value specified on the
RCDFMT Parameter.

2-104 Sequel 11 Programmer’s Guide - Command Reference

COMMIT Parameter

When commitment control is active, this parameter indicates whether and how the open data
path will be placed under commitment control. If there is no active commitment definition for
the job (see IBM documentation for STRCMTCTL) this parameter is ignored.

*NO: The open data path will not be placed under commitment control. Even with
commitment control active, the query will run outside of commitment control.

*YES: The open data path will be placed under commitment control. Even with com-
mitment control active, the query will run outside of commitment control.

*CHG: Every record read for update (for a file opened under commitment control) is
locked. If a record is updated, added, or deleted, that record remains locked until the
transaction is committed or rolled back. Records that are accessed for update but are
released without being updated are unlocked.

*CS: Every record accessed for files opened under commitment control is locked.
Records that are not updated or deleted are locked only until a different record is
accessed. Records that are updated, added, or deleted are locked until the transaction is
committed or rolled back.

*ALL: Every record accessed for files opened under commitment control is locked
until the transaction is committed or rolled back.

KEYFLDCNT Parameter

Use this Parameter to specify how many of the fields in the ORDER BY clause should be used in
creating an access path description for the output file. The KEYFLDCNT Parameter is only used
when a new file is created. It has no significance if EXECUTE places records in an existing file.
It is also ignored if the view does not specify an ORDER BY clause.

*ALL: all fields in the ORDER BY will be used in creating the key description.

*NONE: the new file will not have an associated access path.

number: the number of fields from the ORDER BY clause that will be used to form the
key description for the output file.

ALWNULL Parameter

Use this Parameter to specify whether the newly created file should allow null capable fields
within the record format definition. Refer to the Sequel SQL Reference Guide for more informa-
tion regarding the ALWNULL field attribute and null capability.

*NO: No null capable fields will be created in the record format. Null capable fields
returned by the view will be overridden so that they are not null capable.

*YES: Creates an outfile with all fields null capable, unless the source field has a
non-null default value in the source file, or a non-null default explicit in the SQL state-
ment.

EXECUTE (Execute To A File) Command 2-105

*FIELD: The format is allowed to contain null capable fields. The ALWNULL attribute
for fields in the created format will be determined by each field’s definition within the
view.

TOFLR Parameter

Specifies the name of the folder that contains the PC document to which records are being cop-
ied. A fully qualified path name must be used and all folders in the path must exist.

TODOC Parameter

Specifies the name of the PC document in the folder that receives the records. If the document
name is not valid, an error message is issued, and the command will not complete successfully.

Indicate a valid PC document name. It may contain up to 8 characters. An extension, separated
from the file name with a period, can be up to 3 characters.

PCFMT Parameter

Specifies the format of the data placed into the PC document.

*SDF: This format is similar to the format produced by IBM’s Client Access file trans-
fer with output file type ASCII text. Each record is terminated by a carriage return and
linefeed. Field values are placed in the output record without separators. Numeric values
are unedited except that leading zeros are replaced with blanks and a leading negative
sign is added where appropriate. Decimal values have a decimal point inserted. Columns
edited with EDTCDE(X) are completely unedited – leading zeros are not suppressed,
and no sign or decimal separator is inserted.

dBASE: The results from the view will be placed into the PC document in dBASE III
format. Use this form when you want to import the data into a spreadsheet or a PC data-
base program.

*HTML: Records are written to the indicated file in HTML (hypertext markup language)
format.

*PDF: View results will be placed into the PC document in Adobe Portable Document
Format.

*RTF: View results will be placed into the PC document in Rich Text Format. Font and
margin specifications will be drawn from the user default values accessible through the
ESNDUSR command.

*TXT: This format is the same as *SDF described above.

*WEBSPHERE:The selected DB2 data will be converted into attribute-formatted XML that is
compatible with WebSphere Commerce Suite applications. When the designated output
file is created, it can be imported into WebSphere with the mass Import Utility.

*WKS: The results from the view will be placed into a Lotus worksheet file. Use this
form when you want to import the data into a spreadsheet program that accepts Lotus
worksheet files. Maximum file size is limited to 65535 records.

2-106 Sequel 11 Programmer’s Guide - Command Reference

*XL5: View results will be placed into the PC document in Microsoft Excel 5.0/95
workbook format. Maximum file size is limited to 65535 records.

*XLS, XL8: View results will be placed into the PC document in Microsoft Excel 97
(BIFF8) workbook format. Multiple worksheets will be created if more than 65535 rows
are returned by the view. Maximum file size generated is limited to either 2GB of total
data, or the Microsoft imposed limit of 65534 records per sheet—whichever is reached
first.

*XLSX: View results will be placed into the PC document in Microsoft Excel 2007 for-
mat. Maximum file size generated is limited to either 4GB of total data, or the Microsoft
imposed limit of 16,384 columns by 1,048,576 rows per sheet—whichever is reached
first. Use this format if you want more than 65,535 records in the same sheet. Otherwise,
use *XLS

*XMLXLS: View results will be placed into the PC document in 'Excel-formatted' XML for-
mat (an XML file is created).

*XML: View results will be placed into the PC document in XML database format and
appear in content form for the XML element. The data is formatted using the XML 1.0
standard.

*XML1: View results will be placed into the PC document in XML database format and
appear in attribute form for the XML element. The data is formatted using the XML 1.0
standard.

*PCFILE: The filename extension on the STMF or TODOC value will be used to infer the
PC format. (i.e. .xls->*XLS, .htm->*HTML) An extension of .txt or .csv will be trans-
lated to *DELIMITED format.

Note: Additional formats can be defined using the WRKPCFMT command. Some "standard"
formats are listed below, although their definitions may differ if they have been changed
with WRKPCFMT. All available formats can be listed by placing a question mark (?)
into the format field and pressing the Enter key.

*DELIMITED:The results from the view will be placed into the PC document in a comma
delimited fashion. Fields will be separated with commas, quotation marks will surround
alphanumeric fields, records will be terminated with a carriage return and linefeed.
Numeric fields are edited to include a minus sign and decimal point where appropriate.
No “header” record is provided. This form is especially useful for more general word
processing, spreadsheet, or database applications.

*MERGE: Like the *DELIMITED form, fields are placed into the document in text form
and separated by commas. Quotation marks will surround alphanumeric fields, records
will be terminated with a carriage return and linefeed. Numeric fields are edited accord-
ing to the edit code or edit word supplied by the view. If one is not supplied, a minus
sign and decimal point are included where appropriate. A “header” record listing the
name of each field precedes the data. This form is especially useful when you want to
use a word processor to merge the data with another document.

*TDELIM: The results from the view will be placed into the PC document in a tab delimited
fashion. Fields will be separated with tabs, quotation marks will surround alphanumeric
fields, records will be terminated with a carriage return and linefeed.

EXECUTE (Execute To A File) Command 2-107

TOSTMF Parameter

Specifies the name of a stream file in the integrated file system (IFS) to receive the PC formatted
results. The TOSTMF Parameter allows you to enter up to 2000 characters for the full IFS path
and stream file name. IFS paths and files can be viewed by the IBM command WRKLNK on the
AS/400 or from the PC directory viewer such as Windows Explorer.

IFS Path Rules
Path names are entered left-to-right, beginning with the highest level directory and ending with
the name of the object to be created. Each directory specified in the path must exist. The name of
each component in the path is separated by a slash (/) or back slash (\); for example: ‘Dir1/Dir2/
Name.ext’ or ‘Dir1\Dir2\Name.ext’

A '/' or '\' at the beginning of a path name means that the path begins at the topmost directory, the
"root" (/) directory. For example, ‘/Dir1/Dir2/Name.ext’ where /Dir1 is a subdirectory of the
"root".

If the path name does not begin with '/' or '\', the path is assumed to begin at the current directory
of the user entering the command. The current directory can be determined using the DSP-
CURDIR command. For example, ‘Dir1/Name.ext’ where Dir1 is a subdirectory of the users
current directory.

If the path begins with a '~' followed by '/' or '\', the path is assumed to begin at the home direc-
tory defined in the user profile of the user entering the command. For example, ‘~/Dir1/
Name.ext’ where Dir1 is a subdirectory of the users home directory.

If the path begins with a '~' followed by a user name and then followed by '/' or '\', the path is
assumed to begin at the home directory of the user identified by the user name. For example:
‘~UserName/Dir1/Name.ext’, where Dir1 is a subdirectory of the home directory for UserName.

REPLACE Parameter

Specifies whether an existing file will be replaced with a new one.

*NO: If a PC document with this name already exists in the folder specified by the
TOFLR Parameter, the operation is not performed and the existing PC document is left
unchanged.

*YES: If a PC document with this name already exists in the folder specified by the
TOFLR Parameter, it is replaced by the records retrieved from the view.

*VER Replace the original object with a new version while creating a ‘versioned’ copy
of the original. Stream file object versions are stored in the /sequel/history/
XXXX folder on the IFS (where XXXX is the library specified by the user’s Repository
Library default), and tracked in the SEQUEL/SQVRSNSTMF file.

Note: To create stream file object versions, you must create a sub-folder under the /sequel/
history folder with the same name as your default repository library.

See the Appendix of the ViewPoint User Guide for more on ViewPoint Versioning.

*DFT Replace operation is based on the user’s [Repository] Replace Action default
value.

2-108 Sequel 11 Programmer’s Guide - Command Reference

TOSERVER Parameter

Specifies the target database that the results of the request will be exported to. If this Parameter
is specified, then you must also specify the TOTABLE Parameter. The server-name must corre-
spond to a valid server definition in the SEQUELHost file.

TOTABLE Parameter

Specifies the name of the table that the results of the request will be exported to. This value is
required if the TOSERVER Parameter is specified.

ENTITY Parameter

The ENTITY Parameter specifies the entity name being created in an XML formatted document.
The Entity name can also be thought of as a file level, or perhaps record set description in this
context. Specify one of the following options:

*VIEW: - The entity name will be the view name run by the command.

*NONE: - No entity will be created. The element(s) created by the view will be placed
into the XML result without an entity wrapper.

Name: - Enter a specific entity name.

ENTITYATYR Parameter

Specifies the attributes to include for the entity being created in an XML formatted document.

*NONE: No attributes will be included with the entity tag.

RECIPIENT Parameter

Specifies the SMTP address to receive an e-mail message. The results will be included as an
attachment to the message.

If you are sending EXECUTE results to an e-mail recipient, you do not need to specify a file
name. If you do not want to retain the results after the e-mail message is completed, simply omit
the file specification. Do not specify the TOFLR/TODOC or the TOSTMT Parameter. If you
choose to retain the results in a local file, you may specify a value for either the TOFLR/TODOC
or the TOSTMT Parameter. You are still required to specify the format (*HTML, *CSV, *XLS,
*WKS, *DBF, etc.) of the results.

TEXT Parameter

The TEXT parameter can be used with the OUTFILE parameter to override view text and pro-
vide up to 50 characters for the *FILE object text attribute on newly created files. When using
the RECIPIENT parameter to send email, the text parameter can be used to send up to 80 charac-
ters of text for the email subject.

EXECUTE (Execute To A File) Command 2-109

EMLMSG Parameter

If the recipient Parameter is used to e-mail results, a message can be sent with the attachments.
Up to 1000 characters of message can be sent. Text is continuous without paragraph breaks.

*NONE: No message text is sent with the attachments. The default text is built from the
command.

Text: The text is automatically enclosed in quotes and sent with the attachment.

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

Additional considerations

Records will not be checked for valid decimal data as they are placed into the output file. Invalid
decimal data may cause selection or expression evaluation errors unless IGNDECERR(*YES) is
specified on the command or the view. If specified, decimal data errors encountered while the
view is processed will be ignored and processing will continue. Each invalid decimal digit will
be replaced with a zero digit, an invalid sign will be coded as a positive sign.

If the output file exists prior to executing the request, it is checked for compatibility with the
view. The compatibility check (also known as a record format level id check) compares the data
presented by the view and the structure of the output file. The record format name provided by
the query and the following elements for each field in the query request must match the defini-
tions in the file:

Field name
Specific data type (Zoned, Packed, etc.)
Length and precision

Null capability
Preferred date format

A field’s column heading, edit word or edit code, and coded character set identifier (CCSID) do
not participate in the compatibility test.

If the file is incompatible with the query, Sequel issues an escape message (QRY7000) inform-
ing you of this fact. You must decide whether to delete the file and allow the command to re-cre-
ate it, or to change the name of the OUTFILE and use a different file for the output from this
query.

2-110 Sequel 11 Programmer’s Guide - Command Reference

Output data attributes

Unless otherwise modified by the NAME, LEN, COLHDG, EDTCDE, EDTWRD, and DFT
keywords of the SELECT clause, all attributes from the database fields referenced by the
SELECT clause will be used to define the output format.

Unless specifically typed using the ZONED, INTEGER, or FLOAT functions, all fixed point
numeric fields created by query expressions are output as packed decimal data.

If the SELECT clause does not specify the length of literals via the LEN keyword, a default
length is used. Character literals are created as fixed length fields having the length of the literal.
Numeric integer literals are created as 4 byte binary values. The length of expression results are
based on the operands and operators involved in expression.

Date/time considerations
All date and time fields in the output record receive the preferred format specified by the
DTSTYLE Parameter. If *FIELD is specified, the underlying field format is used for all data-
base fields and the current job’s format is used for columns defined by literal and external val-
ues.

Default values supplied via the DFT keyword in the SELECT clause must conform to the pre-
ferred form of its associated column.

Null value considerations
The null capability for output fields is derived from the database fields on which they are based.
An expression involving one or more fields with the “allow null” attribute causes the result to
have null capability unless ALWNULL(*NO) is specified on the request. Columns that are cre-
ated by literal values will allow nulls only if the SELECT clause also specifies DFT(NULL) for
the column and ALWNULL(*YES) is specified.

CCSID considerations
The output file will preserve the coded character set identifier (CCSID) of the fields chosen in
the SELECT clause. All literal values created by query expressions receive the executing job’s
CCSID. The CCSID value of expression results depends on the CCSID of the participating
fields. Refer to the appropriate IBM manuals for more information regarding the Distributed
Relational Database and Character Dataset Representation architectures.

Error conditions

Data mapping errors (CPF5035) can occur whenever a value is unable to fit into the output field.
Records that cause data mapping errors will not be inserted into the output file. Low level mes-
sages in the joblog of the executing job will clearly indicate the field causing the problem and
the record containing the invalid value.

Data mapping errors will also occur if a valid date value with a year less than 1940 or greater
than 2039 is placed into a field with a preferred format of MDY, YMD, DMY, or JUL.

As many records as possible from the input set will be placed into the output file. A completion
message will be issued indicating how many records were inserted by the request.

EXECUTE (Execute To A File) Command 2-111

Examples

EXECUTE VIEW(ORDERAMT) OUTFILE(QTEMP/ONORD)

The library list is searched for a view named ORDERAMT. It is run and the output is directed to
the ONORD file in the QTEMP library. If QTEMP/ONORD does not exist, it is created. Any
existing records are replaced by the records from the view.

EXECUTE SQL('SELECT * FROM custmast WHERE cstte="IL"')
 OUTFILE(CUSTMAST) OUTMBR(SUBSET) MBROPT(*ADD)

Appends customers with a state value of “IL” to the SUBSET member of the customer master
file. The job’s current library (*CURLIB) is searched for the CUSTMAST file. If it is not found,
it is created in the current library. If member SUBSET does not exist, it is created as well.

EXECUTE SQL('SELECT cusno,cname,amtdu FROM custmast WHERE amtdu>0')
 TOFLR(myflr) TODOC(custdue.dbf)
 REPLACE(*YES) PCFMT(*dbase)

Customers with a positive amount due value are placed into the myflr/custdue.dbf document in
dBASE III format. The file can then be accessed from a PC using shared folder support.

EXECUTE VIEW(SEQUELEX/CUSTLIST) PCFMT(*XLS) TEXT('Customer List')
 RECIPIENT('anyone@yourcompany.com')
 EMLMSG('Attached is the information you requested.')

An excel spreadsheet will be created with the records from the CUSTLIST view and will be e-
mailed as an attachment.

2-112 Sequel 11 Programmer’s Guide - Command Reference

EXECUTEVPT (Execute a VPT Object) Command

The EXECUTEVPT command works only with a VPT view object—a ViewPoint shortcut file
in the ViewPoint Repository (.vptview) that links to a host view object.

This command is typically used when creating Skybot jobs from ViewPoint Repository objects,
and places the results of the referenced view into a database output file, shared folder document,
or IFS stream file. PC-formatted output can also be directed to an SMTP address and sent as an
e-mail message.

If output is sent to a database file, Sequel checks it for compatibility with the view. If compati-
ble, the new data can replace or be appended to any existing records in the file.

In addition, Sequel can create an empty outfile containing no records, but having the format of
the view. The file can be used in compiling a HLL program that will use the Open SQL File
(OPNSQLF) command. Refer to the section beginning page 4-24 for more information.

All of the command’s parameters are exactly the same as the EXECUTE command on page 2-
102. The one parameter that differentiates EXECUTEVPT from EXECUTE—the VPT parame-
ter—is documented below.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution.

VPT Parameter

This parameter names the ViewPoint file to run. Specify the name and path to the VPT file in the
Repository using the format:

*REPOSITORY/path/vptfile.vptview

Examples

EXECUTEVPT VPT('*REPOSITORY/ACCTG/ACCTQRY/RPTMNCUST.vptview')
TOSTMF('*REPOSITORY/ACCTG/ACCTGRPTS/RPTMNCUST.pdf') PCFMT(*PDF)

*REPOSITORY is a special value that specifies the path to the repository ‘root’.

On the VPT parameter, this value becomes '/product_lib_name/swi/repository', e.g. '/sequel/swi/
repository'. So the full path to the shortcut file that identifies the SEQUEL object to run
becomes: '/sequel/swi/repository/ACCTG/ACCTQRY/RPTMNCUST.vptview'

On the TOSTMF parameter, *REPOSITORY represents the network share path up to and
including the 'repository' root. The actual value is derived from the SWIVPDFT setting for 'Tar-
get path'. It will typically become either: '\\SERVER_NAME\root\sequel\swi\repository' or
'\\SERVER_NAME\sequel\swi\repository'.

The full path to the target output is:
'\\SERVER_NAME\sequel\swi\repository\ACCTG\ACCTGRPTS\RPTMNCUST.pdf'

Note: The actual network share for the ifs path must be set up to match the target path setting
specified on the SWIVPDFT command.

GPHAUDSUM (Graph Audit Summary) Command 2-113

GPHAUDSUM (Graph Audit Summary) Command

This command provides a graphical display that summarizes the information in the audit data-
base. Using bar graphs, this display shows you how many Sequel requests were run in a given
hour, day, week, or month. The graphical display is created using the standard 5250 data stream
and does not require a graphics capable display station.

Because the command presents displays to your workstation, it can only be run interactively. It
cannot be run in the batch environment.

DURATION Parameter

Specifies the period for the graphical display. You can choose to see Sequel use totals by hour
within a day, by day within a week or month, or by month within the year.

*DAY: The display will graph requests by hour for a specified day. Each bar represents
the number of requests that were started within the indicated hour.

*WEEK: The display will graph requests occurring on each day of a specified week. Each
bar represents the number of requests that started on the indicated day.

*MONTH: The display will graph requests that were made in a specified month. Each bar
represents the number of requests that were started on the indicated day.

*YEAR: The display will graph requests that were made in each month of the year. Each
bar represents the number of requests that were started in the indicated month.

STRDATE Parameter

Specifies the date to be included on the display. If you choose an hourly summary, all informa-
tion will pertain to the date you specify. If you choose weekly, monthly, or yearly summaries, the
date you indicate will be included in the period chosen by the duration parameter.

*LAST: The last date in the database will be used. This will be the most recent data col-
lected, unless the DLTAUDDTA (Delete Audit Data) command has been used to remove
audit information.

*FIRST: The first (oldest) date in the database will be used.

*CURRENT: Today's date will be used to determine the hourly, weekly, or monthly summa-
ries.

date: Enter any valid date. The date must be in your job's current date format. A date separator
(i.e., '/') is not required, but can be entered if one is defined for your job. If you enter a
date in separator form, it must be enclosed with apostrophes.

2-114 Sequel 11 Programmer’s Guide - Command Reference

INSERT (Insert Records Into A File) Command

The INSERT command gives you the ability to add new records to an existing file. It is similar
to the EXECUTE command, but differs in some interesting ways. Unlike EXECUTE, it cannot
create files or members. Records are always appended to the indicated file; INSERT never clears
data from a file member before adding new records.

Not all fields in the file must be specified on the command — other fields default to values indi-
cated when the file was created. Usually, numeric fields are set to zero, and alphanumeric fields
are set to blanks.

INSERT will perform extensive data mapping and data conversion so that numeric and character
values can be placed into target records even though source values have different field lengths or
types than the targets. This is perhaps the most important difference between INSERT and EXE-
CUTE and allows you to combine data from different sources even though attributes may not
match.

Either a single record or a set of records can be added to a file. A single record can be inserted by
indicating a series of field names and corresponding values on the command. An entire set of
records can be inserted by performing a query (against one or more files) and placing the records
from the query into the file.

The INSERT command specifies the file that will receive the new record(s), the fields that are
being supplied, and the values to be inserted. Inserted record values are supplied in one of two
ways:

a VALUES list specifies a series of values which become a single new record in the file.

a query (SQL statement or view) creates a set of records which are placed in the file.

When the INSERT command is finished, the number of value sets processed, the number of
records inserted and the number of value records skipped due to errors will be noted in the job
message queue.

With the exception of the SERVER and SYNTAX parameters, all other parameters of the
INSERT command are identical to those required by the Create View (CRTVIEW) command on
page 2-37.

For an explanation of the SERVER and SYNTAX parameters, refer to the DISPLAY command
on page 2-63.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

Refer to the Data Modification section (page 5-1) of this manual for additional information
about Sequel’s data modification capabilities.

INSERT (Insert Records Into A File) Command 2-115

INTO Parameter

Specifies the file to receive the records. You must have operational authority and INSERT data
rights to this file.

You can insert records into a physical or logical file. The INTO Parameter must clearly identify
the file, member, and format to receive records. As with all relational operations, the records to
be inserted must conform to a single format. If the receiving file is a multiple format logical file,
you must indicate which format will receive the records. Otherwise, you are allowed to accept
the default of *ONLY which indicates that the only format in the file will be used.

You can explicitly specify the file, library, member, and format name of the receiving file. Alter-
natively you may wish to use special values (which are the defaults) in order to simplify your
requests:

*LIBL: Indicates the library list is to be searched for the file you have named. If it is not
found an error message will be issued and the INSERT command will not complete.

*FIRST: The first member in the file will be used for output. If no members exist, an
error will occur and the INSERT command will not complete.

*ONLY: There is only one record format in the file and it should be used when creating
new records. If the file is a multi–format logical file, an error will occur and the INSERT
command will not complete.

INTOTABLE Parameter

Use this parameter to run INSERT requests on remote servers. Specify the table (file) name on
the remote server that is to receive the inserted records. Use the format - "schema.table_name".

The INSERT command is a special case because the file that is being INSERTed into isn't the
file referenced in the FROM clause, but rather the file referenced in the INTO parameter. Since
remote file names are qualified differently ("schema.table_name"), the INTOTABLE parameter
allows you to use the more natural syntax, and longer file names like so:

INSERT INTOTABLE('dbo.CUSNO_WORK') FIELDS(CUSNO) VALUES(100203)
SERVER(ACSERVER2SQL)

When the schema/file name is less than, or equal to 10 characters you can use either syntax as
seen below:

INSERT INTO(dbo/CUSNO_WORK) FIELDS(CUSNO) VALUES(100202) SERVER(ASC-
SERVER2SQL)

2-116 Sequel 11 Programmer’s Guide - Command Reference

FIELDS Parameter

Specifies the list of fields in the new record(s) that will receive the values you are supplying.
You do not necessarily need to specify values for all fields in the records you are creating. Any
fields that you omit will assume their default values — usually blank for alphanumeric fields and
zero for numeric fields.

*ALL: All fields in the record will be supplied by the VALUES list or query

field-name: Individual fields can be listed (up to 50) in any order.

Note: There must be a one to one correspondence between the number of fields indicated by the
FIELDS list and the number of values supplied by the VALUES list or the query. Furthermore,
fields in the FIELDS list must correspond positionally with fields supplied by the VALUES list
or query.

Data mapping occurs as follows:

Charactercharacter: The leftmost characters from the source are placed in the target field
and padded on the right with blanks if necessary. Either operand (or both) are allowed to be
varying length strings.

Characternumeric: Character values are converted from external numeric form (including
commas, decimal point, and leading or trailing sign) to signed numeric form.

Characterdate or time: All character string values must match the format identified by the
DTSTYLE keyword.

Numericcharacter: The integer portion of numeric values are placed, right-justified, in
unedited form in the character field. Leading zeros are placed to the left of the number as
necessary.

Numericnumeric: Signed values are mapped from source to target.

It is possible that the source record(s) may contain values that cannot be placed (mapped) into
their target field locations. If this occurs, Sequel will issue a conversion error message indicating
that the target field cannot receive the source value. The source record will be skipped, the target
record corresponding to the source values will not be inserted, and Sequel will continue in an
attempt to process the next set of values.

VALUES Parameter

Indicate the values (up to 50) which correspond to the fields specified by the FIELDS Parameter.
Values are limited to 100 positions. One record will be inserted.

Values can be constants, external values (CURRENT DATE, CURRENT TIME, USER, etc.) or
expressions involving constants and external values. Constant values should be represented as
they would normally occur within a Sequel statement. Surround character constants with double
quotation marks ("). Decimal values require a leading digit. Each value specification containing
a character constant or expression should also be surrounded by a set of single quotation marks.

INSERT (Insert Records Into A File) Command 2-117

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

COMMIT Parameter

This parameter is ignored if there is no active commitment definition for the job (see IBM docu-
mentation for STRCMTCTL). When commitment control is active, this parameter indicates
whether and how the open data path will be placed under commitment control. See the discus-
sion on commitment control (page 5-2) for more information.

*NO: The open data path will not be placed under commitment control. Even with
commitment control active, the query will run outside of commitment control.

*YES: The open data path will be placed under commitment control using the default
lock level (LCKLVL) specified with STRCMTCTL.

*CHG: Every record read for update (for a file opened under commitment control) is
locked. If a record is updated, added, or deleted, that record remains locked until the
transaction is committed or rolled back. Records that are accessed for update but are
released without being updated are unlocked.

*CS: Every record accessed for files opened under commitment control is locked.
Records that are not updated or deleted are locked only until a different record is
accessed. Records that are updated, added, or deleted are locked until the transaction is
committed or rolled back.

*ALL: Every record accessed for files opened under commitment control is locked
until the transaction is committed or rolled back.

Query Parameters

When the query form of the INSERT is used, either an SQL statement or a view name must be
specified on the command. If an SQL statement is entered, a temporary view named QTEMP/
SQLEXEC is created from the statement prior to processing. This view is automatically deleted
when the command completes.

Additional considerations

As a general rule, it will be best to allow the system to use OPTIMIZE(*TOTAL) in executing
your query request. Data management will need to process all the records in the view you create,
so the appropriate optimization goal is to expedite the entire query process.

2-118 Sequel 11 Programmer’s Guide - Command Reference

If IGNDECERR(*YES) is specified, decimal data errors encountered while the view is pro-
cessed will be ignored and processing will continue. Each invalid decimal digit will be replaced
with a zero digit, an invalid sign will be coded as a positive sign.

Fields within the output record that are not specified by the FIELDS Parameter will receive (in
order of precedence):

the default value specified by the DFT keyword (if one was provided during file creation)

NULL value if the column allows null values

the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP value if the column
has a date, time, or timestamp data type.

Error conditions
If an error occurs while the insert is in progress, the insert will end abnormally. If a decimal data
error occurs and IGNDECERR(*YES) is not specified, the insert will also end abnormally. As
many records as possible from the input set will be placed into the output file. One or more low
level messages will appear in the joblog indicating the nature of the problem. A completion mes-
sage will be issued indicating how many records were inserted by the request.

Remote Database Considerations

For *ISERIES connections using *LOCAL or *LOCALSYS, the INSERT target file must be
journaled. For more information on creating and using journals, see the Commitment Control
section starting on page 5-2.

For non-System i remote connections (such as SQL Server, Oracle, and MySQL), syntax
*SEQUEL is not supported. The VIEW or SQL must be written in the syntax of the target data-
base.

You cannot INSERT across systems—meaning you cannot INSERT data on system A with data
from system B.

The SQL or VIEW used by the INSERT command cannot contain joined files. You can only
specify one file in the FROM clause when a SERVER value other than *SEQUEL is specified.

For the INTO or INTOTABLE parameters of the INSERT command (page 2-115), the value
specified must match the case (upper vs. lower) of the target file as defined on the remote data-
base. If the target file name is lower case, the target file name must be enclosed in single quotes
like so: INTO('dbo.cusno_work')

For the FIELDS parameter of the INSERT command (page 2-116), the value specified must
match the case (upper vs. lower) of the target field as defined on the remote database.

Any field in the target table (file) that is not defined as null capable and does not have a default
value, must be specified in the FIELDS parameter along with its corresponding default value in
the VALUES parameter.

For the VALUES parameter of the INSERT command (page 2-116), all character strings must be
surrounded by triple single-quotes like so: VALUES('''new value''')

INSERT (Insert Records Into A File) Command 2-119

Improve Performance on the System i
You can improve performance on the local System i, if you override existing Sequel views to run
as *LOCALSYS. For example:

INSERT INTO(CUSNOCNAME) VIEW(SEQUELEX/SEQCSNM200)

Runs using the older Classic Query Engine (CQE), but:

INSERT INTO(CUSNOCNAME) VIEW(SEQUELEX/SEQCSNM200) SERVER(*LOCALSYS)

runs using the new SQL Query Engine (SQE) of the query processor. For views that update large
numbers of records the performance difference can be significant.

Examples

INSERT INTO(SEQUELEX/TRIANGLES) VALUES(21 28)

Creates one new record in the TRIANGLES file in the SEQUELEX library. The VALUES
Parameter specifies two numeric constants which correspond to the two fields in the record.

INSERT INTO(CUSTMAST) FIELDS(cname cusno)
 VALUES('"Acme Bike Supplies"' 321020)

Adds one record to the customer master file on the library list. Only two fields are specified, all
others will assume their default values.

INSERT INTO(sequelex/custmast cmp2)
 FIELDS(cname cadd1 cadd2 city cstte czipc cphon)
 SQL('SELECT name,addr1,addr2,city,state,zip,phone
 FROM address')

All the records in the ADDRESS file are converted and inserted into the CUSTMAST file.
Fields are matched positionally and are converted to the target data attributes (type, length) as
necessary.

INSERT INTO(CUSNO_WORK) FIELDS(CUSNO) VALUES(100200)
 SERVER(ASCSERVER2SQL)

Inserts a single record into the CUSNO_WORK table on the remote sever ASCSERVER2SQL
and sets the value of field CUSNO to 100200.

INSERT INTOTABLE('custmast') FIELDS(CNAME CUSNO)
 VALUES('''Abc Company''' 123456) SERVER(ASCSERVER2SQL)

Inserts a single record into the CUSTMAST table on the remote sever ASCSERVER2SQL and
sets the values of fields CNAME and CUSNO. Notice the target file name is lower case to match
the definition on the remote database and it is enclosed in single quotes.

2-120 Sequel 11 Programmer’s Guide - Command Reference

LSTDCTOBJ (List Sequel Authority By Object) Command

This command prints the contents of the Sequel Authority Dictionary and organizes the listing
by library and file name. All entries for each object will be listed. The report shows the same
content as the LSTDCTUSR report, but it is organized in a different way.

This command has no Parameters and can be run from either a batch or an interactive environ-
ment.

The report looks like the one below. It shows all the Sequel Authority Dictionary entries for each
file and field.

Exclusions are listed in alphabetical order and are arranged by library, file, and field. Current
library, file, and field text are printed on the report. The report shows exclusions for two librar-
ies: PILOT and SEQUELEX.

The DATEJOIN file in the PILOT library is the only file with exclusion entries. The
GROUPADM user (or any user with GROUPADM as its group profile) cannot use any of its
fields. All other users can access the DATEJOIN fields and the fields in any other file to which
they are authorized.

Exclusions are listed for three files in the SEQUELEX library. The “protected” fields in each file
are listed along with the users (and their group members) that are prohibited from accessing
them. Other fields and other files are not protected from access by authorized users.

 11/18/09 11:24:20 Page 3 SEQUEL Authority Dictionary By Object
 Library/File/Field User list

 PILOT Job scheduling and report distribution

 DATEJOIN Join:JOBSCH,RPTHDR,JOBHDR,RPTDTL by jobnam,rptnam
*ALL GROUPADM

 SEQUELEX SEQUEL Examples and sample files

CUSTMAST SEQUEL Outfile:Customer Master
 AMTDU Outstanding A/R balance GROUPADM
 CPHON Phone number QPGMR
 CRLIM Credit limit in dollars QPGMR GROUPADM
 CSTTE Customer state QPGMR
 CTYPE Customer type QPGMR
 CZIPC Customer zipcode GROUPADM
 MTD$C Month to date sales GROUPADM
 OROPN Total open orders in dollars GROUPADM
 PAYAM Last payment amount QPGMR QSECOFR GROUPADM
 PAYDY Last payment date - day GROUPADM
 PAYMN Last payment date - month GROUPADM
 PAYYR Last payment date - year GROUPADM
 YTD$C Year to date sales GROUPADM

 ORDHEAD Open Orders - Header file
 INVNO Invoice number GROUPADM
 ORTOT Retail value of remaining on order GROUPADM
 ORVAL Retail value of order GROUPADM

 PARTMAST Product Master
 STDC1 Total std cost - base standard GROUPADM

 STATUS STATUS Job & Resource Accounting

 *ALL
 *ALL GROUPADM

LSTDCTUSR (List Sequel Authority Dictionary By User) Command 2-121

LSTDCTUSR (List Sequel Authority Dictionary By User)
Command

This command prints the contents of the Sequel Authority Dictionary and organizes the listing
by user profile name. All entries for each user will be listed. The report shows the same content
as the LSTDCTOBJ report, but it is organized in a different way.

This command has no Parameters and can be run from either a batch or an interactive environ-
ment.

The report looks like the one below. It shows all the Sequel Authority Dictionary entries for each
user profile.

Entries are listed in alphabetical order and are arranged by user profile, library and file. Current
user profile, library, and file text are printed on the report. The report shows exclusions for two
users: GROUPADM and QPGMR.

The GROUPADM user has restrictions for files in three libraries: PILOT, SEQUELEX, and
STATUS. The user (and all users with GROUPADM as its group profile) are restricted from
using any of the fields in the PILOT/DATEJOIN file, and the listed fields in the CUSTMAST,
ORDHEAD, and PARTMAST files in the SEQUELEX library. None of the files in the STATUS
library can be accessed, regardless of the system object authority that they user might otherwise
have.

The QPGMR user (and members of its group) are restricted from only the listed fields in the
SEQUELEX/CUSTMAST file. All other files to which the user has the required authority can
be used in Sequel statements.

 11/18/09 11:23:52 Page 2 SEQUEL Authority Dictionary By User
 User/library/file Field list

 GROUPADM Administrative Group

PILOT PILOT Job scheduling system

DATEJOIN Join:JOBSCH,RPTHDR,JOBHDR,RPTDTL by jobnam,rptnam *ALL

SEQUELEX SEQUEL Examples and sample files

CUSTMAST SEQUEL Outfile:Customer Master AMTDU CRLIM HIGHB MTD$C
OROPN PAYAM PAYDY PAYMN
PAYYR YTD$C

ORDHEAD Open Orders - Header file INVNO ORTOT ORVAL

PARTMAST Product Master STDC1

STATUS STATUS Job & Resource Accounting

*ALL *ALL

 QPGMR Programmer and Batch User

SEQUELEX SEQUEL Examples and sample files

CUSTMAST SEQUEL Outfile:Customer Master CPHON CRLIM CSTTE CTYPE
CZIPC PAYAM

2-122 Sequel 11 Programmer’s Guide - Command Reference

MGRSQLOBJ (Migrate Sequel Objects) Command

The MGRSQLOBJ command is useful in the migration from the Sequel Data Area version to the
Sequel User Space version. It will create user space objects from the Sequel data area objects.

A successful migration is dependent upon the ability of the migration process to find the files the
view is created over. If files on the FROM clause are qualified with a library other than QTEMP,
this will not be an issue. If the library is not qualified on the FROM clause or the file is in
QTEMP, be sure to include the database file library on the library list where MGRSQLOBJ job
is run and create the files in QTEMP. MGRSQLOBJ cannot migrate views that are simply
“SELECT *’ over a file that cannot be found or does not exist.

Messages will be logged for each Sequel object. An RPT9002 message will be logged for each
successful migration. If a Sequel object was unable to be converted to a user space object, a
QRY7501 message will be sent.

OBJ Parameter

The command keyword indicates which items you wish to migrate.

Object Name:

*ALL: All Sequel objects in the selected library are chosen.

Generic*: Sequel objects meeting the generic criteria are chosen. Enter the beginning por-
tion of the object name and append an asterisk.

Object-name: Specific object name

Library Name:

*LIBL: Libraries on the library list containing the type of objects indicated by the OBJ-
TYPE Parameter are included.

*CURLIB: The job’s current library (*CURLIB) will be searched for Sequel objects.

*ALL: All libraries on the system containing Sequel objects are included.

*ALLUSR: All user libraries (those not beginning with the letter “Q”) on the system that
contain Sequel objects are migrated.

*USRLIBL: Libraries on the user portion of your library list containing Sequel objects are
migrated.

MGRSQLOBJ (Migrate Sequel Objects) Command 2-123

OBJTYPE Parameter

*ALL: All Sequel views, tables and reports meeting the criteria of the OBJ Parameter
will be migrated.

*VIEW: All Sequel views and tables meeting the criteria of the OBJ Parameter will be
migrated.

*RPT: All Sequel reports meeting the criteria of the OBJ Parameter will be migrated.

TOOBJ Parameter

To Object:

*FROMOBJ: The user space object will be created with the same name as the data area
object.

Name: A specific object name can be specified.

Library:

*FROMLIB: The user space object will be created in the same library as the data area object.

*CURLIB: The user space object will be created in the current library.

REPLACE Parameter

*NO: The user space object will not be created if a user space object already exists.

*YES: The user space object will be created whether a user space exists or not.

2-124 Sequel 11 Programmer’s Guide - Command Reference

MNTHOSTF (Sequel Host File Maintenance) Command

ViewPoint and many Sequel commands support the ability to connect to remote databases and
process SQL requests against them. All remote database accesses are performed between this
System i and the remote data server-there is no connection between the personal computer run-
ning ViewPoint and the remote system.

The available remote databases are defined in a database file named SEQUELHOST which is
stored on the System i. Each user's Sequel settings indicate the SEQUELHOST file that will be
used for their remote database access

Use the Sequel Host File Maintenance command (MNTHOSTF) to define the connection and
provide the information necessary to connect to a remote database. There are two types of
entries: platform entries and database server entries. A platform entry begins with an asterisk
(i.e. *ISERIES, *ORACLE, etc.) and identifies characteristics that will be common to all the
connections for a specific platform. A database server entry references the platform entry; the
common properties do not need to be specified for each database on the given platform.

File Parameter

Specify the file that contains the remote system definitions. SEQUELHOST in library SEQUEL
is the default.

Library Parameter

Specify the library name that contains the Sequel Host File (SEQUELHOST) that is to be used.

OPNSQLF (Open Sequel File) Command 2-125

OPNSQLF (Open Sequel File) Command

The Open Sequel File command creates an open data path (ODP) based on your SQL statement
or view. You can use it to connect an SQL request to a high level language program.

This command is the Sequel equivalent of the OS/400 Open Query File (OPNQRYF) command.
OPNSQLF makes it possible for your RPG, COBOL, PL/I or CL programs to process results
from an SQL request. The HLL programs can use standard I/O operations to receive and update
information through the Sequel file.

The OPNSQLF command offers two significant advantages over OPNQRYF. First, the query
request can be formatted using standard SQL, a relatively simple language with easily under-
stood syntax. Second, you do not need to create and retain a DDS created “format file” for use
by the command.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created from the statement
prior to processing. This view is automatically deleted when the command completes.

With the exceptions below, command Parameters are identical to those required by the Create
View (CRTVIEW) command. Refer to the description of CRTVIEW starting on page 2-37 for a
complete explanation of each Parameter.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

Refer to Part 4 for additional information about programming with Sequel and using the
OPNSQLF command.

OPNID Parameter

Indicates the name to be associated with the open file. It is only used in conjunction with the
Close File (CLOF) command when the file is closed. It has no other significance.

*VIEW: the name of the open data path is the view name. If an SQL statement is passed
to the command, the openid (and view name) will be SQLEXEC.

OPTION Parameter

Specifies the data options to be made available through the file. You can either specify
OPTION(*ALL) or an option value that combines any (or all) of the data option (*INP, *OUT,
*UPD, *DEL) allowed values. Queries which require joining, grouping, or temporary results
cannot be updated and thus are only available for input. In addition, derived fields (calculated)
can only be accessed as input by a program and do not appear in any output buffer which may be
available.

2-126 Sequel 11 Programmer’s Guide - Command Reference

TYPE Parameter

Specifies the invocation level at which the reclaim resources (RCLRSC) command is to be
effective.

*NORMAL: allows the reclaim resources command to close the file if the program exits
without doing a close.

*PERM: forces the file to remain open until the routing step terminates or a specific
Close File (CLOF) command is used.

SEQONLY Parameter

Indicates whether record blocking will occur and the size of the record blocks.

*YES: Records will be retrieved in sequential only fashion and so records should be
blocked for the program. The system will determine the blocking factor.

*YES nbr-of-records:Records will be retrieved in sequential only fashion and so records should
be blocked for the program. The optional nbr-of-records specifies the blocking factor. If
you do not specify a blocking factor, the system will determine an appropriate size.

*NO: No record blocking should take place.

COMMIT Parameter

This parameter is ignored if there is no active commitment definition for the job (see IBM docu-
mentation for STRCMTCTL). When commitment control is active, this parameter indicates
whether and how the open data path will be placed under commitment control. See the discus-
sion on commitment control (page 5-2) for more information.

*NO: The open data path will not be placed under commitment control. Even with
commitment control active, the query will run outside of commitment control.

*YES: The open data path will be placed under commitment control using the default
lock level (LCKLVL) specified with STRCMTCTL.

*CHG: Every record read for update (for a file opened under commitment control) is
locked. If a record is updated, added, or deleted, that record remains locked until the
transaction is committed or rolled back. Records that are accessed for update but are
released without being updated are unlocked.

*CS: Every record accessed for files opened under commitment control is locked.
Records that are not updated or deleted are locked only until a different record is
accessed. Records that are updated, added, or deleted are locked until the transaction is
committed or rolled back.

*ALL: Every record accessed for files opened under commitment control is locked
until the transaction is committed or rolled back.

Indicates whether or not the open data path will be placed under commitment control.

OPNSQLF (Open Sequel File) Command 2-127

OPNSCOPE Parameter

Specifies the extent of influence (scope) of the open operation. This Parameter is necessary
when ILE programs will be using the open data path. It is not valid when TYPE(*PERM) is
specified. The possible values are:

*ACTGRPDFN:Not used.

*ACTGRP: Not used.

*JOB: The scope of the open operation is the job in which the open operation occurs.
Sequel requires the open be scoped to the job when used with ILE programs.

Note: OPNSQLF requires the use of OVRDBF in order for the HLL program to read the open
data path created by Sequel. In order for the override to be seen by all programs, the OVRDBF
command must specify OVRSCOPE(*JOB) and OPNSCOPE(*JOB). See the additional consid-
erations at the end of this section for details and examples for using the OVRDBF command.

RCDFMT Parameter

In creating an open data path, Sequel requires a format name. Specify the name of the format to
be used and passed to the program.

VIEWFMT: the default record format name for Sequel created formats.

format-name: a valid name to identify the created format.

ALWNULL Parameter

Use this Parameter to specify whether the format returned by OPNSQLF should allow null capa-
ble fields. Refer to Part 2 for more information regarding the ALWNULL field attribute and null
capability.

*NO: No null capable fields will be created in the record format presented to the pro-
gram for level checking purposes. Null capable field definitions created by the view will
be overridden so that they do not appear to be null capable when viewed by HLL pro-
gram that opens the data path.

*YES: The format is allowed to contain null capable fields. The ALWNULL attribute
for fields in the created format will be determined by each field’s definition within the
view.

OPTALLAP Parameter

Specifies whether the query optimizer should consider all the access paths that exist over the
files being queried when determining how to accomplish the query.

*NO: Allow the query optimizer to operate normally. When determining how to start a
query, the optimizer considers access paths until an internal timeout value has been
exceeded. If there are a large number of access paths over the files being queried, the
optimizer may time out before it has considered all the available access paths.

2-128 Sequel 11 Programmer’s Guide - Command Reference

*YES: Force the query optimizer to ignore the internal timeout value and consider all
the available access paths over all the files in the query. Note that if there are a large
number of access paths over the files it may take a long time to optimize the query.

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

SRTSEQ Parameter

Specifies the sort sequence table to be used for sorting and grouping selections.

*JOB: The SRTSEQ value for the job is retrieved for the job.

*HEX: A sort sequence table is not used, and the hexadecimal values of the characters
are used to determine the sort sequence.

*LANGIDUNQ: A unique weight sort table is used.

*LANGIDSHR:A shared weight sort table is used

table-name: Specify the name of the sort sequence table to be used with this query.

LANGID Parameter

Specifies the language identifier to be used when SRTSEQ(*LANGIDUNQ) or SRT-
SEQ(*LANGIDSHR) is specified.

*JOB: The SRTSEQ value for the job is retrieved for the job.

language-ID: Specify the language identifier to be used by the job.

CCSID Parameter

Specifies the coded character set identifier (CCSID) in which data from character, DBCS-open,
DBCS-either and graphic fields will be returned. Data from UCS-2 fields is not converted.

*JOB: Data is returned in the CCSID of the job issuing the OPNQRYF command.

*HEX: No CCSID conversion is performed before the data is returned.

CCSID-value: Specify a CCSID value. Data will be converted to this CCSID before it is
returned.

OPNSQLF (Open Sequel File) Command 2-129

Additional Considerations

To gain access to the Sequel file, you must execute an Override With Database File (OVRDBF)
command specifying the SHARE(*YES) Parameter. Unless you execute the OVRDBF com-
mand, your program will perform a full (non-shared) open of the database file and not access the
Sequel file. The OVRDBF command must be run before the HLL program opens the file; prefer-
ably after the OPNSQLF command is executed. Otherwise, the override may have an undesired
effect on the OPNSQLF request.

The OVRDBF command should reference the name of your program’s file in the FROMFILE
Parameter, and use the name of the first file in the view as the TOFILE name, along with the
SHARE(*YES) Parameter. If your view includes a UNION or UNION ALL phrase, the TOFILE
Parameter should specify the first file of the last FROM clause (excluding subqueries) in your
view. This will enable your program to use the open data path created by this command.

The RCDFMT Parameter of the OPNSQLF command will always define the record format
name in the open data path. You must explicitly specify the record format name that will be ref-
erenced by the HLL program via the RCDFMT Parameter of the OPNSQLF command.

The level id for the opened file will always match the level id of a physical file created by the
EXECUTE command for the same view. You can avoid level checking by specifying
LVLCHK(*NO) on an OVRDBF statement prior to issuing the OPNSQLF command. The
FROMFILE/TOFILE Parameters should name the first file in the FROM clause.

Depending on optimization options and database content, ordering may be accomplished by
using a sort operation rather than an index build. If your HLL program intends to process the
open file by key, your OPNSQLF command should specify ALWCPY(*IFRQD) to prevent dis-
cretionary sorting operations.

Examples

OPNSQLF VIEW(CUSTLIST)
OVRDBF FILE(CUSTMAST) OVRSCOPE(*JOB) SHARE(*YES) OPNSCOPE(*JOB)

In this example, the HLL program and the CUSTLIST view both use a file named CUSTMAST,
so it is not necessary to specify the TOFILE parameter on the OVRDBF command. An input
only open data path is created based on the CUSTLIST view.

OVRDBF FILE(CUSTMAST) OVRSCOPE(*JOB) SHARE(*YES) +
 OPNSCOPE(*JOB)
OPNSQLF SQL('select * from custmast where cstte="MN"') +
 RCDFMT(CUSFMT) OPNID(aplus)
CALL APLSAMPLE/CUSTLISTLE
DLTOVR FILE(CUSTMAST) LVL(*JOB)
CLOF aplus

In an ILE program, make sure the place the OVRDBF command before the OPNSQLF com-
mand.

2-130 Sequel 11 Programmer’s Guide - Command Reference

OUTFILE (Execute an SQL View) Command

The OUTFILE command is identical to the EXECUTE command (page 2-102) except when
used to produce output using option 9 from the WRKVIEW menu. Support for the OUTFILE
command is limited to maintaining compatibility with user-written legacy applications. Users
are encouraged to discontinue use of OUTFILE and work with the EXECUTE command
instead.

When the OUTFILE command is used from the WRKVIEW screen with option 9, the file will
be created in the library specified in the Default Outfile library from the user’s Sequel defaults.

The OUTFILE command uses the Sequel User Defaults. If ‘Allow Change to Library Defaults’
is set to NO, the user running OUTFILE will only be able to create files in the library named by
the ‘Default outfile library’ setting of the user defaults. If the ‘Default outfile library’ is set to
*NONE, the use will not be able to create files using the OUTFILE command.

PRINT (Print Sequel Data) Command 2-131

PRINT (Print Sequel Data) Command

The PRINT command routes query output to the printer and optionally an e-mail address. Data
is directed to the Sequel printer files (SQLPRT1,2,3,..,7) and placed on the output queue identi-
fied by the OUTQ Parameter. Parameters specified on the command control the page width and
length of the report. If the edited data from your view exceeds the page width, the surplus will be
printed on up to seven separate pages, creating an “extra-wide” report. If the results are to be
directed to an e-mail address, the printed results are sent as “.WRI” attached files.

If the standard paper size at your installation is different from the PRINT command defaults, use
the CHGCMDDFT command to change them so that you need not continually specify these val-
ues.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created from the statement
prior to processing. This view is automatically deleted when the command completes.

With the exception of the SERVER and SYNTAX parameters, all other parameters on the
PRINT command are identical to those required by the Create View (CRTVIEW) command on
page 2-37.

For an explanation of the SERVER and SYNTAX parameters, refer to the DISPLAY command
on page 2-63.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

TEXT Parameter

The TEXT keyword may be specified if an SQL statement is specified. It should not be used if a
view name is given. The text, either from the command or the view, will appear at the top of
each report page as a title.

COPIES Parameter

Specifies the number of copies to be produced.

*SAME: The number of copies specified when the view was created will be used when
the view is run.

integer: The specified number of copies will be created during this execution.

HOLD Parameter

Specifies whether the report will be created in the output queue with HOLD status - preventing
its printout until released by the operator.

2-132 Sequel 11 Programmer’s Guide - Command Reference

*SAME: The HOLD status specified when the view was created will be used when the
view is run

*YES: The report is automatically held in the output queue.

*NO: The report is not held in the output queue.

SAVE Parameter

Specifies whether the view will be created in the output queue with SAVE status - allowing it to
be retained in the queue after it is printed.

*SAME: The SAVE status specified when the report was created will be used when the
report is run.

*YES: The view output is saved in the output queue after it is printed.

*NO: The view output is not saved in the output queue after printing.

PAGESIZE Parameter

Specifies the size of the paper the view will print on. Indicate the height of the page in lines (up
to 99) and the width of the paper in columns (up to 378). The default size is 66 lines long and
132 columns wide.

OVRFLW Parameter

Controls the maximum number of lines that can appear on each page. It must be equal to or less
than the number of lines on the page given by the PAGESIZE keyword. A bottom margin can be
forced to appear on each page by setting the overflow value less than the page size. The default
overflow line is line 60.

LPI Parameter

Many printers are capable of printing with various vertical densities. This keyword controls the
number of lines per inch (LPI) which will be printed on the page. Standard values are 6 and 8;
your printer may allow others. The default is *USRDFT which uses the value from the Sequel
user defaults.

CPI Parameter

Controls the horizontal print density by indicating the number of characters per inch (CPI) to be
printed on a line. Standard values are 10, 12, and 15; your printer may allow others. Specify a
CPI value of 16 to create spooled output with a 16.7 CPI pitch. The default is *USRDFT which
uses the value from the Sequel user defaults.

Note: The logical size of the page is controlled by the combination of PAGESIZE and LPI/CPI
values. It is usually best to measure the physical paper size first, and then divide the dimensions
by the desired LPI and CPI values in order to arrive at the appropriate PAGESIZE dimensions.

PRINT (Print Sequel Data) Command 2-133

SUMMARY Parameter

A trailing page indicating the number of records selected by the view, and the SQL statement
used in the retrieval can print following the report data.

*USRDFT: Uses the value specified in the Sequel user defaults.

*YES: Print the trailing page showing record count and SQL statement.

*NO: Do not print the trailing page.

PCFMT Parameter

Specifies the format of the data that will be output. If the Recipient Parameter contain an entry
all formats are valid, otherwise only the *SPL value is valid

*SPL: If used in conjunction with stream file or recipient Parameters, the report is for-
matted in the type determined by the SPOOL keyword, as specified in the ESNDUSR
command

If there is no entry for Stream file and Recipient, the report is output to a spool file.

*TEXT: Results are e-mailed as an attachment, formatted in standard text format

*HTML: Results are e-mailed as an attachment, formatted in HTML format.

*RTF: Results are e-mailed as an attachment, formatted in Rich Text format.

*PDF: Results e-mailed as an attachment, formatted in PDF format.

RECIPIENT Parameter

Specifies the SMTP address to receive an e-mail message. The results will be included as an
attachment to the message.

EMLMSG Parameter

If the recipient Parameter is used to send e-mail, a message can be sent with the attachments. Up
to 1000 characters of message can be sent. Text is continuous without paragraph breaks.

*NONE: No message text is sent with the attachments. The default text is built from the
command.

text: The text is automatically enclosed in quotes and sent with the attachment.

OUTQ Parameter

An Output Queue entered here will override the internal defaults.

*SETDFT: The output queue is determined from the value defined in the Sequel user
defaults

2-134 Sequel 11 Programmer’s Guide - Command Reference

*JOB: The output queue used by the job that is currently running is used for the sub-
mitted job

*CURRENT: The output queue used by the job that is currently running is used for the sub-
mitted job. Same as *JOB.

*USRPRF: The output queue in the user profile where the submitted job runs is used as the
output queue for the submitted job. The output queue name is obtained from the profile
when this command is run.

*DEV: The output queue associated with the printer specified on the DEV Parameter of
the printer file is used. The output queue has the same name as the printer. The printer
file DEV Parameter is determined by the Create Print File (CRTPRTF), Change Print
File (CHGPRTF), or the Override Print File (OVRPRTF) commands

*JOBD: The output queue named in the job description used with the submitted job is
the job's default output queue.

output-queue-name:Specify the name of the output queue that is used as the default output
queue by the job.

Error conditions

Decimal data errors encountered while the view is processed will be represented as question
marks (?) on the printout if IGNDECERR(*NO) is specified on the PRINT command or view.
Failure to specify IGNDECERR(*YES) may cause view processing to terminate if an expres-
sion or selection operation involving invalid decimal data occurs.

If IGNDECERR(*YES) is specified, each invalid decimal digit will be replaced with a zero
digit, and an invalid sign will be coded as a positive sign. Processing will not terminate if invalid
decimal data is encountered during expression evaluation or record selection.

Null values will print as either “n/a” or a ¬, depending on field length. This special value will be
left adjusted in character and date columns and right adjusted in numeric columns.

Examples

PRINT SQL('SELECT * FROM custmast')

Information in the customer master file will be printed using the default paper size. One cus-
tomer record will be printed per line. If more than one page width is required, up to seven pages
will be used.

PRINT VIEW(ORDERINQ) PAGESIZE(68 198) LPI(8) CPI(15) OVRFLW(64)

Records from the order inquiry view will be printed at 8 lines per inch on paper which is 8.5”
tall. Print density will be 15 characters per inch, providing 198 columns on 14” wide paper.

PRTAUDDTA (Print Audit Data) Command 2-135

PRTAUDDTA (Print Audit Data) Command

This command lets you print the audit information. Using the parameters on the command, you
can run the AUDITQRY view and create a report that contains the audited requests you select.
The report will show the information presented on the audit inquiry display but does not include
the complete detail provided by the Print Audit Detail (PRTAUDDTL) command.

The command parameters let you specify each of the view's variables. Because the parameters
are available, the runtime prompt screen will not appear when you run the command. As a result,
you can submit the command to a batch subsystem for execution.

The command requires you to enter the starting and ending date for the requests you want
included on the report. Other parameters may be left blank. If values are not provided for them,
*OMIT will be used for the corresponding variable and the variable's test will not occur.

DATE1 and DATE2 Parameters

Both date fields are required. Use the DATE1 parameter to specify the beginning date and
DATE2 to indicate the ending date. Only requests that started between these dates (inclusive)
will be listed on the report. Specify these fields in any system recognizable form (USA, ISO,
EUR, etc.) or in your local format. Alternatively, you can use the special values below:

*FIRST: Allowed for the DATE1 parameter, it indicates the first date included in the
audit database.

*LAST: Allowed for the DATE2 parameter, it indicates the last date included in the audit
database.

*OMIT: When specified for both DATE1 and DATE2, it omits a date test from the crite-
ria, selecting all records in the audit database regardless of their date. If *OMIT is spec-
ified for either parameter, it must be specified for both.

TIME1, and TIME2 Parameters

You do not need to specify time values, but you must specify both a beginning and ending value
if you choose to specify either entry. Specify these fields according to your job's time format
(usually HH:MM:SS). Requests that started between the beginning time and the ending time
(inclusive) will be included. Some of these may be omitted by other values specified on the
prompt.

USER, JOB, JOBNBR Parameters

Specify values for the requests to be included. Only requests that were run by the user and/or job
you specify will be allowed to appear in the inquiry. Some of these may be omitted by other val-
ues specified on the prompt.

Requests are tested for equality against the values you enter. If you choose to enter a user profile
name, job name, and/or job number, you must enter them exactly as they will be found in the
audit records.

2-136 Sequel 11 Programmer’s Guide - Command Reference

RPTLIB, RPTNAM, VWLIB, VWNAM Parameters

Specify the name of the view and/or report to be included. Only requests that were run using the
objects you specify will be allowed to appear in the inquiry. Some of these may be omitted by
other values specified on the prompt.

The object name and library name fields are independent. You do not need to specify both. You
can choose to specify a library name and omit the corresponding object name if you want to
select all views (or reports) that were run from a particular library.

CMD Parameter

Specify the command that was used to run the request. You must enter one of these values: DIS-
PLAY, PRINT, EXECUTE, REPORT, OPNSQLF, INSERT, UPDATE, DELETE. Only requests
that used the command you specify will be allowed to appear in the inquiry. Some of these may
be omitted by other values specified on the prompt.

IOCNT1, IOCNT2, CPU1, CPU2 Parameters

You can choose to select requests based on CPU time required for completion and/or the number
of auxiliary I/O operations performed. You must specify both values for the range if you choose
to specify either entry. Only requests having a total I/O count and CPU time (seconds) in the
range you specify will be allowed to appear in the inquiry. Some of these may be omitted by
other values specified on the prompt.

ORDER Parameter

These entry fields let you specify the order of the requests on the inquiry display. Enter a field
name (from the QRYSUM record) listed in the table below. The default value places records in
descending date sequence so that the most recent requests are listed first.

HESTSP Starting timestamp
HECPU Total CPU time
HEIO Number of auxiliary I/O operations
HECMD Sequel command used

HEJOB Job name
HEUSER User profile
HENBR Job number

HERPLB Report library
HERPNM Report name
HEVWLB View library
HEVWNM View name

ORDERTYP Parameter

Choose either ASC (ascending) or DESC (descending) order. The default value places records in
descending date sequence so that the most recent requests are listed first.

PRTAUDDTL (Print Audit Detail) Command 2-137

PRTAUDDTL (Print Audit Detail) Command

This command lets you print the complete audit information for any audited request. The report
contains the same information as provided by the detailed WRKAUDDTA inquiry display
shown on page 2-213.

The command parameters let you choose the requests you want printed in the same manner as
the PRTAUDDTA command. The printout is produced using an open data path from the
AUDITQRY view. Using the command parameters, you can specify each of the view's variables.
The runtime prompt shown on page 0 34 will not appear when you run the command. Conse-
quently, you can submit the command to a batch subsystem for execution.

The parameters are identical to the parameters for the PRTAUDDTA command.

You should expect the command to produce a few pages of output for each request you select. If
your request is not reasonably specific, the command may produce an unacceptably high number
of pages of output.

The report produced by the command shows the Sequel statement, the view and report used, and
execution details of the request. Each message generated by the query optimizer is also printed
along with the complete second level text.

2-138 Sequel 11 Programmer’s Guide - Command Reference

PRTAUDFIL (Print Audited File Usage) Command

This command lets you print information about the requests that have used a given file. The
report lists the user and job information for each request and shows the view and report that
caused the file to be used.

FILE Parameter

Specify the name of the file you want to report on. Each audited request using the file's data or
access path will be listed on the report.

The generated report lists each Sequel request that used the file you specified. Subtotals showing
the number and total CPU time required for each type of command appear at the end of the
report.

PRTAUDPTH (Print Audited Access Paths) Command 2-139

PRTAUDPTH (Print Audited Access Paths) Command

This command lets you print information about the access paths that were built by the audited
Sequel requests. The report shows the file and member being used, the key sequence, and the
amount of time consumed during the access path creation step. Records are organized so that
you can determine whether creating permanent access paths will significantly reduce the time it
takes for queries to complete.

SECONDS Parameter

Specify the lower limit to be included on the report. The value specifies the number of seconds
of elapsed time (clock) required to build any access path needed to complete the request. Any
audited request with an access path build time equal to or longer than this value will be listed on
the report.

2-140 Sequel 11 Programmer’s Guide - Command Reference

PRTRPTD (Print Report Description) Command

This command will print the description (format, calculations, and view definition) of a report.
You may print the report description during the report design session (using F10) or after the
definition has been created. PRTRPTD prints a facsimile of the report similar to that displayed
during report editing.

This command can be run interactively or from a batch subsystem. It can also be run from the
Work With Reports (WRKREPORT) display.

Two spooled output files are created each time the command is run. The description of the report
(SQL statement, line definitions, calculations) is printed with a line width of 132 and the form-
size of the SEQUEL/SQLPRT1 printer file. A facsimile of the report (its layout) will be printed
in a separate spooled file having a formsize and print density (LPI, CPI) matching the character-
istics stored with the report when it was created.

REPORT Parameter

Specifies the name and library of the report description(s) to be printed. You must have opera-
tional authority (*OBJOPR) in order to print a report description. You can specify individual
reports or make a generic request.

Report-name: identify the report and library to be described.

Generic*-name:indicates a series of reports should be printed. The description and facsimile of
all reports meeting the naming criteria will be printed.

*ALL: descriptions for all reports in the specified library should be printed. Sequel will
find all SQLRPTs in the library you name (to which you have *OBJOPR authority) and
print their description.

*LIBL: the library list is to be searched for reports matching the naming criteria you
have specified. A generic *LIBL request is not allowed.

Output is directed to the SQLPRT1 and SQLPRT2 printer files. Output queue, copy count, hold/
save status and other output control Parameters are controlled by its definition and/or the
current attributes of your job.

Examples

PRTRPTD REPORT(SEQUELEX/ORDERPRINT)

The report description for the ORDERPRINT report in the SEQUELEX library will be printed.

PRTRPTD REPORT(RPTLIB/*ALL)

All reports in the RPTLIB library will be documented.

PRTSEQUEL (Print Sequel Objects) Command 2-141

PRTSEQUEL (Print Sequel Objects) Command

The PRTSEQUEL command will print a list of all or some of the Sequel objects in a library or
list of libraries. The printout will provide the name of the object, the object type (SQLVIEW,
SQLVIEWP, SQLRPT, etc.), creation date, library and text. Objects will be listed alphabetically
by library and object name.

OBJ Parameter

The command keyword indicates which items you wish to work with.

Object Name:

*ALL: All Sequel objects in the selected library are chosen.

Generic*: Sequel objects meeting the generic criteria are chosen. Enter the beginning por-
tion of the object name and append an asterisk.

Object-name: Specific object name

Library Name:

*PRV: The previous “work with” library will be used again.

*CURLIB: The job’s current library (*CURLIB) will be searched for Sequel objects.

*LIBL: Libraries on the library list containing the type of objects indicated by the OBJ-
TYPE Parameter are included.

*ALL: All libraries on the system containing Sequel objects are included.

*ALLUSR: All user libraries (those not beginning with the letter “Q”) on the system that
contain Sequel objects are printed.

*USRLIBL: Libraries on the user portion of your library list containing Sequel objects are
printed.

OBJTYPE Parameter

The list of chosen objects can be filtered by object type to limit the list to views, prompted
views, reports, or all Sequel objects.

*ALL: All Sequel objects including views (with and without variables), tables, reports
and scripts.

*VIEW: All Sequel views.

*STDVIEW: All Sequel views without variables. Those with an attribute of SQLVIEW.

*PMTVIEW: All Sequel view with variables. Those with an attribute of SQLVIEWP.

*RPT: All Sequel reports.

2-142 Sequel 11 Programmer’s Guide - Command Reference

REPORT (Run A Sequel Report) Command

The REPORT command will run a Sequel report and place the output on an output queue. The
command can be entered directly from the command entry display, as a Work With Reports
(WRKREPORT) option, or from a user selected menu system driven by standard CL program-
ming.

The REPORT command can be run interactively or submitted to a batch subsystem. Most
reports should be submitted since a batch subsystem is better suited for their relatively long run-
ning nature and hard copy output.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created from the statement
prior to processing. This view is automatically deleted when the command completes.

If you choose to supply an SQL statement or view that is different from the one originally used
during report design, Sequel will verify that the new query is compatible with the report. If it is
not compatible, Sequel will inform you that you must review the report design (DSNREPORT)
using the new view before the report can be run.

With the exception of the SERVER and SYNTAX parameters, all other parameters on the
REPORT command are identical to those required by the Create View (CRTVIEW) command
on page 2-37.

For an explanation of the SERVER and SYNTAX parameters, refer to the DISPLAY command
on page 2-63.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

REPORT Parameter

The REPORT keyword names the report you want to run. You must supply the report name and
it must match a SQLRPT created via the Design Report (DSNREPORT) command. You can also
specify a Client Report (SQLRPTC) object as long as the TOSTMF or RECIPIENT value is pro-
vided. All other parameters are ignored except PCFMT. This requires a configured Viewpoint
server (as specified by the SEQUELWI/SWIVPDFT command, TARGET parameter) and
Sequel Web Interface. In order to run the report, you must have operational authority to the
report and view user spaces, and operational and read authority to all database files used by the
view.

REPORT (Run A Sequel Report) Command 2-143

SQL Parameter

This is the SQL statement to be used during this execution of the report. It overrides the view
used when the report was designed. A temporary view named QTEMP/SQLEXEC is created
prior to processing. This view is automatically deleted when the command completes.

VIEW Parameter

Specifies the view to be used during this execution of the report. It overrides the view used when
the report was designed.

*RPT: The view (or SQL statement) used during the last report editing (DSNREPORT)
session will be used to run the report.

TITLE Parameter

You may also supply a different title to the report by specifying the TITLE keyword. A value
entered for the TITLE keyword will be substituted for each instance of the @@TITLE field in
the report. Up to 50 characters can be supplied as a new title, although only as many characters
as were in the original title when the report was designed will be used. If the view supports run-
time variables, a variable reference can be included in the TITLE Parameter.

Generally, it is wise to supply a new title when you change the report data by using a different
view or SQL statement. Failing to do so may result in a misunderstanding about the nature and
meaning of the finished report.

COPIES Parameter

Specifies the number of copies to be produced.

*SAME: The number of copies specified when the report was created will be created
when the report is run.

integer: the specified number of copies will be created during this execution.

HOLD Parameter

Specifies whether the report will be created in the output queue with HOLD status preventing its
printout until released by the operator.

*SAME: the HOLD status specified when the report was created will be used when the
report is run.

*YES: the report is automatically held in the output queue.

*NO: the report is not held in the output queue.

2-144 Sequel 11 Programmer’s Guide - Command Reference

SAVE Parameter

Specifies whether the report will be created in the output queue with SAVE status allowing it to
be retained in the queue after it is printed.

*SAME: the SAVE status specified when the report was created will be used when the
report is run.

*YES: the report is saved in the output queue after it is printed.

*NO: the report is not saved in the output queue after printing.

RECIPIENT Parameter

Specifies the SMTP address to receive an e-mail message. The results will be included as an
attachment to the message. For information on e-mail, please refer to the ESEND User’s Guide.

EMLMSG Parameter

If the recipient Parameter is used to send e-mail, a message can be sent with the attachments. Up
to 1000 characters of message can be sent. Text is continuous without paragraph breaks.

*NONE: No message text is sent with the attachments. The default text is built from the
command.

text: The text is automatically enclosed in quotes and sent with the attachment.

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

TOSTMF Parameter

Specifies the name of a stream file in the integrated file system (IFS) to receive the results of the
report formatted in HTML. The TOSTMF Parameter allows you to enter up to 2000 characters
for the full IFS path and stream file name. IFS paths and files can be viewed by the IBM com-
mand WRKLNK on the AS/400 or from the PC directory viewer such as Windows Explorer.

REPORT (Run A Sequel Report) Command 2-145

IFS Path Rules
Path names are entered left-to-right, beginning with the highest level directory and ending with
the name of the object to be created. Each directory specified in the path must exist. The name of
each component in the path is separated by a slash (/) or back slash (\); for example: ‘Dir1/Dir2/
Name.ext’ or ‘Dir1\Dir2\Name.ext’

A '/' or '\' at the beginning of a path name means that the path begins at the topmost directory, the
"root" (/) directory. For example, ‘/Dir1/Dir2/Name.ext’ where /Dir1 is a subdirectory of the
"root".

If the path name does not begin with '/' or '\', the path is assumed to begin at the current directory
of the user entering the command. The current directory can be determined using the DSP-
CURDIR command. For example, ‘Dir1/Name.ext’ where Dir1 is a subdirectory of the users
current directory.

If the path begins with a '~' followed by '/' or '\', the path is assumed to begin at the home direc-
tory defined in the user profile of the user entering the command. For example, ‘~/Dir1/
Name.ext’ where Dir1 is a subdirectory of the users home directory.

If the path begins with a '~' followed by a user name and then followed by '/' or '\', the path is
assumed to begin at the home directory of the user identified by the user name. For example:
‘~UserName/Dir1/Name.ext’, where Dir1 is a subdirectory of the home directory for UserName.

REPLACE Parameter

Specifies whether the new information will replace an existing PC file. This Parameter is only
valid if the TOSTMF Parameter is also specified.

*NO: If a stream file with this name already exists in the path specified by the
TOSTMF Parameter, the operation is not performed and the existing PC file is left
unchanged.

*YES: If a stream file with this name already exists in the path specified by the
TOSTMF Parameter, it is replaced by the HTML report results.

*VER Replace the original object with a new version while creating a ‘versioned’ copy
of the original. Stream file object versions are stored in the /sequel/history/
XXXX folder on the IFS (where XXXX is the library specified by the user’s Repository
Library default), and tracked in the SEQUEL/SQVRSNSTMF file.

Note: To create stream file object versions, you must create a sub-folder under the /sequel/
history folder with the same name as your default repository library.

See the Appendix of the ViewPoint User Guide for more on ViewPoint Versioning.

*DFT Replace operation is based on the user’s [Repository] Replace Action default
value.

PCFMT Parameter

Specifies the format of the data that will be output. If the Stream file Parameter and / or the
Recipient Parameter contain an entry, all formats are valid. Otherwise only the *SPL value is
valid.

2-146 Sequel 11 Programmer’s Guide - Command Reference

*SPL: If used in conjunction with stream file or recipient Parameters, the report is for-
matted in the type determined by the SPOOL keyword, as specified in the ESNDUSR
command

If there is no entry for Stream file and Recipient, the report is output to a spool file.

*TEXT: The results from the report will be placed into the attachment as simple text.

*HTML: Records are written to the indicated file in HTML (hypertext markup language)
format. You should use this form if you want to make the view results available through
a web browser.

*RTF: Results are placed into a PC file, formatted in Rich Text format.

*PDF: Results are placed into Adobe PDF format.

OUTQ Parameter

An Output Queue entered here will override the internal defaults.

*SETDFT: The output queue is determined from the value defined in the Sequel user
defaults

*JOB: The output queue used by the job that is currently running is used for the sub-
mitted job

*CURRENT: The output queue used by the job that is currently running is used for the sub-
mitted job. Same as *JOB.

*USRPRF: The output queue in the user profile where the submitted job runs is used as the
output queue for the submitted job. The output queue name is obtained from the profile
when this command is run.

*DEV: The output queue associated with the printer specified on the DEV Parameter of
the printer file is used. The output queue has the same name as the printer. The printer
file DEV Parameter is determined by the Create Print File (CRTPRTF), Change Print
File (CHGPRTF), or the Override Print File (OVRPRTF) commands

*JOBD: The output queue named in the job description used with the submitted job is
the job's default output queue.

output-queue-name:Specify the name of the output queue that is used as the default output
queue by the job.

*NONE: The output from the REPORT command will be removed from the system when
the request is complete. Use this value when you are sending results via e-mail (RECIP-
IENT) or to a stream file (STMF) and you do not want the report left on a local output
queue. Running the REPORT command interactively with OUTQ(*NONE) causes the
report to appear at the workstation and then to be removed once the user finishes view-
ing it. If OUTQ(*NONE) is specified for a batch job that does not specify RECIPIENT
or STMF, the output queue will be changed to *JOB.

REPORT (Run A Sequel Report) Command 2-147

Examples

REPORT REPORT(CUSTLISTR)

The CUSTLISTR report on the library list is run using the view over which it was designed.

REPORT REPORT(SEQUELEX/ORDERPRINT) VIEW(SEQUELEX/ORDERINQ) OPTI-
MIZE(*FIRSTIO)

The ORDERPRINT report in the SEQUELEX library will be run using the ORDERINQ view as
a source of data. The *FIRSTIO optimization goal will override the optimization criteria speci-
fied on the view.

REPORT REPORT(SEQUELEX/CUSTLISTR) RECIPIENT('creditmanager@yourcom-
pany.com') EMLMSG('Attached please find the customer listing we dis-
cussed.') PCFMT(*RTF) OUTQ(*NONE)

The CUSTLISTR report in the SEQUELEX library will be run and the results will be e-mailed
in rich text format. The spooled output will be deleted after the e-mail is sent.

2-148 Sequel 11 Programmer’s Guide - Command Reference

REPORTVPT (Run a ViewPoint Report Object) Command

The REPORTVPT command works only with a VPT report object—a ViewPoint shortcut file in
the ViewPoint Repository (.vptview) that links to a host client report object.

This command is typically used when creating Skybot jobs from ViewPoint Repository objects
and will run a Sequel report and place the output on an output queue.

A view name must be specified for the command. This view is automatically deleted when the
command completes.

All of the command’s parameters are exactly the same as the REPORT command on page 2-142.
The one parameter that differentiates REPORTVPT from REPORT—the VPT parameter—is
documented below.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

VPT Parameter

This parameter names the ViewPoint file to run. Specify the name and path to the VPT file in the
Repository using the format:

*REPOSITORY/path/vptfile.vptreport

Examples

REPORTVPT VPT('*repository/test/cust.vptreport')

*REPOSITORY is a special value that equals the path to the repository ‘root’ (/sequel/swi/
repository). In the example, the ViewPoint file is placed in the TEST folder under the repository
root path. Sub folders under the repository root must be created prior to using the REPORTVPT
command.

RGZDCT (Reorganize Sequel Authority Dictionary) Command 2-149

RGZDCT (Reorganize Sequel Authority Dictionary) Command

Sequel’s Authority Dictionary is, in a sense, disassociated from your database. Entries you make
are based on the current state of the database and the objects in it. As the database evolves and
new objects are added and existing objects are changed or removed, the exclusion dictionary
may need to change as well. It will not automatically be updated by the operating system or by
Sequel when you delete objects from your computer.

If you are using the Authority Dictionary, you should periodically use the Reorganize Sequel
Authority Dictionary (RGZDCT) command to verify that only currently valid entries exist in the
Authority Dictionary. This command has no Parameters and can be run in a batch environment.

The command causes all entries in the exclusion dictionary to be checked for relevance. Entries
will be dropped if they name:

a user profile that no longer exists

a library or file that no longer exists

a field that no longer exists in the specified file

When the command has completed, deleted records will be removed from the dictionary via the
Reorganize Physical File Member (RGZPFM) command.

2-150 Sequel 11 Programmer’s Guide - Command Reference

RSMRPTDSN (Resume Report Design) Command

The Resume Report Design (RSMRPTDSN) command can be used to migrate a report defini-
tion to a previous operating system version or to recover from an unexpected termination of the
report design tool.

Due to save/restore and other architecture differences, it is impossible to transfer objects back-
wards from one level of the operating system to a previous level not supported by the
TGTRLS(*PRV) option of the save commands.

Views can be transferred to any previous level of the operating system by re-creating them with
the CRTVIEW or CHGVIEW commands, or with the user interface. Transferring reports is
somewhat more difficult and requires the use of the Resume Report Design (RSMRPTDSN)
command.

The command is similar to the Design Report (DSNREPORT) command and works by retriev-
ing information from files created by the design tool. The work files are not initialized by the
RSMRPTDSN command prior to starting the report editor. Instead, the report editor is started
using the members from the files for the user. The contents of the members of the work files
reflect the report as it was left by the report editor during the previous design step.

This makes it easy to recover from an unexpected or abnormal termination of the design tool. If
the report design session was exited inadvertently, you can often resume the report design ses-
sion, picking up just prior to your previous exit, by using the RSMRPTDSN command. It is
important that you do not run another DSNREPORT command prior to attempting the recovery
using RSMRPTDSN.

In the event Design Report (DSNREPORT) is done simultaneously from multiple sessions, the
specifications for the second report will be placed into members in temporary files built in
QTEMP. In this instance, the report layout from the second session cannot be retrieved if the AS/
400 session terminates.

The syntax for the RSMRPTDSN command follows:

Transferring a report definition from one level of the operating system to a previous one can be
accomplished using the following steps:

Use DSNREPORT on the “current” AS/400 to edit the report you want to transfer and fill
the work files in QTEMP with the report definition.

Use DSNREPORT on the target machine to create the work files in QTEMP. You do not
need to actually create a report, simply issue the command, wait for the initial display to
appear, then exit using F3.

Transfer the “current” AS/400 work file data to the target by using any of these commands:
Send/Receive Network File (SNDNETF)/(RCVNETF)
Copy To/From Tape (CPYTOTAP)/(CPYFRMTAP)
Copy To/From Diskette (CPYTODKT)(CPYFRMDKT)

Verify that the view needed by the report exists on the target computer. If it is not present, create
it.

RSMRPTDSN (Resume Report Design) Command 2-151

Issue the RSMRPTDSN command to start the report editor using the view and the restored work
files. You must ensure that the view or SQL statement you supply matches the view used in
the original report. The report will be complete and appear to be finished. You need only to
review it and end the report design session, saving the report definition in a user space.

Example transfer of a report definition

On the source AS/400 issue these commands:

DSNREPORT REPORT(SEQUELEX/ORDERPRINT)
--- Make any changes. Exit the report editor. ---

CPYTODKT FROMFILE(QTEMP/RPTFLDH) TOFILE(QDKT)

CPYTODKT FROMFILE(QTEMP/RPTFLDS) TOFILE(QDKT)

CPYTODKT FROMFILE(QTEMP/RPTFLDL) TOFILE(QDKT)

CPYTODKT FROMFILE(QTEMP/RPTCNDT) TOFILE(QDKT)

CPYTODKT FROMFILE(QTEMP/RPTLINS) TOFILE(QDKT)

CPYTODKT FROMFILE(QTEMP/RPTORD) TOFILE(QDKT)

On the target System i issue these commands:

DSNREPORT *CREATE SQL('SELECT * FROM SQLEXEC.SEQUEL')
--- Exit report editor when first display appears. ---

CPYFRMDKT FROMFILE(QDKT) TOFILE(RPTFLDH.QTEMP)
 FROMLABEL('RPTFLDH') MBROPT(*REPLACE)

CPYFRMDKT FROMFILE(QDKT) TOFILE(RPTFLDS.QTEMP)
 FROMLABEL('RPTFLDS') MBROPT(*REPLACE)

CPYFRMDKT FROMFILE(QDKT) TOFILE(RPTFLDL.QTEMP)
 FROMLABEL('RPTFLDL') MBROPT(*REPLACE)

CPYFRMDKT FROMFILE(QDKT) TOFILE(RPTCNDT.QTEMP)
 FROMLABEL('RPTCNDT') MBROPT(*REPLACE)

CPYFRMDKT FROMFILE(QDKT) TOFILE(RPTLINS.QTEMP)
 FROMLABEL('RPTLINS') MBROPT(*REPLACE)

CPYFRMDKT FROMFILE(QDKT) TOFILE(RPTORD.QTEMP)
 FROMLABEL('RPTORD') MBROPT(*REPLACE)

CRTVIEW VIEW(ORDERINQ.SEQUELEX) SQL(...)

RSMRPTDSN REPORT(*CREATE) VIEW(ORDERINQ.SEQUELEX)
--- Report appears in completed form. Exit and Save ---

2-152 Sequel 11 Programmer’s Guide - Command Reference

RTVRPTD (Retrieve Report Description) Command

The Retrieve Report Description (RTVRPTD) command is used in a CL program to retrieve the
values of one or more report attributes and place them into the specified CL variable(s).

RTNLIB Parameter

Specifies the name of the CL variable to receive the library name of the report. This is especially
useful when *LIBL is specified for the library name and the job’s library list is searched for the
report. This variable must be a character variable with a minimum length of 10 characters.

VIEWNAME Parameter

Specifies the name of the CL variable to receive the name of the view over which the report was
built. This variable must be a character variable with a minimum length of 10 characters.

VIEWLIB Parameter

Specifies the name of the CL variable to receive the name of the view over which the report was
built. This variable must be a character variable with a minimum length of 10 characters.

FORMTYPE Parameter

Specifies the name of the CL variable to receive the name of the form specified when the report
was built. This variable must be a character variable with a minimum length of 10 characters.

PAGELEN Parameter

Specifies the name of the CL variable to receive the length of the form specified when the report
was built. This variable must be a 3-digit decimal variable with 0 decimal positions.

PAGEWID Parameter

Specifies the name of the CL variable to receive the width of the form specified when the report
was built. This variable must be a 3-digit decimal variable with 0 decimal positions.

PAGEOFL Parameter

Specifies the name of the CL variable to receive the overflow line specified when the report was
built. This variable must be a 3-digit decimal variable with 0 decimal positions.

LPI Parameter

Specifies the name of the CL variable to receive the lines per inch value specified when the
report was built. This variable must be a 1-digit decimal variable with 0 decimal positions.

RTVRPTD (Retrieve Report Description) Command 2-153

CPI Parameter

Specifies the name of the CL variable to receive the characters per inch value specified when the
report was built. This variable must be a 2-digit decimal variable with 0 decimal positions.

COPIES Parameter

Specifies the name of the CL variable to receive the value specified for the number of copies to
be printed when the report was built. This variable must be a 3-digit decimal variable with 0 dec-
imal positions.

HOLD Parameter

Specifies the name of the CL variable to receive the hold on output queue value indicated for the
report. This variable must be a character variable with a minimum length of 4 characters.
Returned values can be: *YES or *NO.

SAVE Parameter

Specifies the name of the CL variable to receive the save on output queue value indicated for the
report. This variable must be a character variable with a minimum length of 4 characters.
Returned values can be: *YES or *NO.

TITLE Parameter

Specifies the name of the CL variable to receive the title text specified when the report was cre-
ated. This variable must be a character variable with a minimum length of 50 characters.

FOOTING Parameter

Specifies the name of the CL variable to receive the footing text specified when the report was
created. This variable must be a character variable with a minimum length of 30 characters.

SQL Parameter

Specifies the name of the CL variable to receive the SQL statement encapsulated in the report
when it was created. This variable must be a character variable. If the SQL statement is longer
than the variable, the variable will be filled with the leftmost characters of the SQL statement. If
the statement is shorter than the variable, the rightmost characters of the variable will be set to
blanks.

SQLLEN Parameter

Specifies the name of the CL variable to receive the length of the SQL statement encapsulated in
the report when it was created. This variable must be a five-position decimal variable with no
decimal positions.

2-154 Sequel 11 Programmer’s Guide - Command Reference

Examples

RTVRPTD REPORT(SEQUELEX/CUSTLISTR) VIEWNAME(&OBJ) VIEWLIB(&LIB)

This command retrieves information from the CUSTLISTR report in the SEQUELEX library.
The view name over which the report was built is placed into the &OBJ variable, and the view’s
library is returned to the &LIB variable.

RTVRPTD REPORT(ORDERPRINT) RTNLIB(&LIB)VIEWNAME(&OBJ)
VIEWLIB(&LIB) FORMTYPE(&FTYPE) PAGELEN(&LEN)
PAGEWID(&WID) PAGEOFL(&OFL) LPI(*LPI)
CPI(&CPI) COPIES(&CPY) HOLD(&HOLD)
SAVE(&SAVE) TITLE(&TITLE) FOOTING(&FOOT)
SQL(&SQL) SQLLEN(&LEN)

Retrieves information from the ORDERPRINT report on the library list. The library name is
returned to the &LIB variable. All other view information is placed in the indicated variables.

RTVRPTSQL (Retrieve Report SQL) Command 2-155

RTVRPTSQL (Retrieve Report SQL) Command

The Retrieve Report SQL (RTVRPTSQL) command lets you recover the SQL statement used in
a report and create a view from it. It is especially useful if the view which is used by a report is
accidentally deleted.

If a report is designed so that it references a view, the view must exist when the report is subse-
quently run. If the REPORT command is executed and VIEW(*RPT) is indicated, Sequel will
verify that the view named in the report definition exists. If it does not, an escape message will
be issued informing you of the problem and your REPORT request will not run.

Deletion of the view may go undetected for a considerable length of time if the report is not run
frequently. Consequently it is possible that no one will remember its original SQL contents.

You can use the RTVRPTSQL command to retrieve the SQL statement used by the report (you
can view it by using the Display Report Description (DSPRPTD) command) and place it into a
view user space.

REPORT Parameter

Names the report to be processed. You must supply the report name and it must match a Sequel
report (SQLRPT) user space created via the Design Report (DSNREPORT) command. In order
to retrieve the SQL statement from a report, you must have operational authority to the report
user space.

VIEW Parameter

Specifies the view to be created by the command. If the view already exists, you will receive an
error message.

*RPT: the view originally used to create the report will be re-created.

view-name: specify the view name to be created and library you want it placed into.

AUT Parameter

Specifies the authority given to the users who have no specific authority to the view and without
specific authority granted to their user profile group.

*LIBCRTAUT:the authority for the view is taken from the value specified on the Create author-
ity (CRTAUT) Parameter of the library into which the view is being created.

*USE: allows other users to examine and run the view.

*ALL: allows others to examine, run, change, and delete the view.

*EXCLUDE: prevents other users from accessing the view in any way.

2-156 Sequel 11 Programmer’s Guide - Command Reference

Examples

RTVRPTSQL REPORT(SEQUELEX/ORDERPRINT)

This command recreates the view originally used by the ORDERPRINT report in the
SEQUELEX library. The view will be recreated with its original name and placed in the library
it was located in when the last successful DSNREPORT command was used with this report.

RTVRPTSQL REPORT(CUSTLISTR) VIEW(QTEMP/CVIEW)

The SQL statement used by the CUSTLISTR report on the library list will be retrieved and used
to create a view called CVIEW in library QTEMP.

RTVTBLD (Retrieve Table Description) Command 2-157

RTVTBLD (Retrieve Table Description) Command

The Retrieve Table Description (RTVTBLD) command is used in a CL program to retrieve the
values of one or more table attributes and place them into the specified CL variable(s).

RTNLIB Parameter

Specifies the name of the CL variable to receive the library name of the table definition. This is
especially useful when *LIBL is specified for the library name and the job’s library list is
searched for the table. This variable must be a character variable with a minimum length of 10
characters.

VIEWNAME Parameter

Specifies the name of the CL variable to receive the name of the view over which the table defi-
nition was built. This variable must be a character variable with a minimum length of 10 charac-
ters.

VIEWLIB Parameter

Specifies the name of the CL variable to receive the name of the view over which the table defi-
nition was built. This variable must be a character variable with a minimum length of 10 charac-
ters.

SQL Parameter

Specifies the name of the CL variable to receive the SQL statement encapsulated in the table
definition when it was created. This variable must be a character variable. If the SQL statement
is longer than the variable, the variable will be filled with the leftmost characters of the SQL
statement. If the statement is shorter than the variable, the rightmost characters of the variable
will be set to blanks.

SQLLEN Parameter

Specifies the name of the CL variable to receive the length of the SQL statement encapsulated in
the table definition when it was created. This variable must be a five-position decimal variable
with no decimal positions.

TEXT Parameter

Specifies the name of the CL variable to receive the value of the title specified for the table defi-
nition. This variable must be a character variable with a minimum length of 50 characters.

2-158 Sequel 11 Programmer’s Guide - Command Reference

Examples

RTVTBLD TABLE(SEQUELEX/CUSTLISTT) VIEWNAME(&OBJ) VIEWLIB(&LIB)

This command retrieves information from the CUSTLISTT table in the SEQUELEX library.
The view name over which the table was built is placed into the &OBJ variable, and the view’s
library is returned to the &LIB variable.

RTVTBLD TABLE(ORDERTABLE) RTNLIB(&LIB)
 SQL(&SQL) SQLLEN(&LEN) TEXT(&TXT)

Retrieves information from the ORDERTABLE definition on the library list. The library name is
returned to the &LIB variable. All other view information is placed in the indicated variables.

RTVTBLSQL (Retrieve Table SQL) Command 2-159

RTVTBLSQL (Retrieve Table SQL) Command

The Retrieve Table SQL (RTVTBLSQL) command lets you recover the SQL statement used in a
tabling view and create a view from it. It is especially useful if the view which is used by a table
is accidentally deleted.

If a table is designed so that it references a view, the underlying view must exist when the table
is subsequently run. If the TABLE command is executed and VIEW(*TBL) is indicated, Sequel
will verify that the view named in the table definition exists. If it does not, an escape message
will be issued informing you of the problem and your TABLE request will not run.

Deletion of the view may go undetected for a considerable length of time if the tabling view is
not run frequently. Consequently it is possible that no one will remember its original SQL con-
tents.

You can use the RTVTBLSQL command to retrieve the SQL statement used by the table (you
can view it by using the Display Table Description (DSPTBLD) command) and create a view
from it.

TABLE Parameter

Names the tabling view to be processed. You must supply the table name and it must match a
Sequel table (SQLTBL) created via the Design Table (DSNTABLE) command. In order to
retrieve the SQL statement from a tabling view, you must have operational authority to the
tabling.

VIEW Parameter

Specifies the view to be created by the command. If the view already exists, you will receive an
error message.

*TBL: the view originally used to create the table will be re-created.

view-name: specify the view name to be created and library you want it placed into.

AUT Parameter

Specifies the authority given to the users who have no specific authority to the view and without
specific authority granted to their user profile group.

*LIBCRTAUT:the authority for the view is taken from the value specified on the Create author-
ity (CRTAUT) Parameter of the library into which the view is being created.

*USE: allows other users to examine and run the view.

*ALL: allows others to examine, run, change, and delete the view.

*EXCLUDE: prevents other users from accessing the view in any way.

2-160 Sequel 11 Programmer’s Guide - Command Reference

Examples

RTVBLSQL TABLE(SEQUELEX/ORDERTBL)

This command recreates the view originally used by the ORDERTBL table in the SEQUELEX
library. The view will be recreated with its original name and placed in the library it was located
in when the last successful DSNTABLE command was used with ORDERTBL.

RTVRPTSQL TABLE(CUSTLISTT) VIEW(QTEMP/CVIEW)

The SQL statement used by the CUSTLISTT table on the library list will be retrieved and used
to create a view called CVIEW in library QTEMP.

RTVVIEWD (Retrieve View Description) Command 2-161

RTVVIEWD (Retrieve View Description) Command

The Retrieve View Description (RTVVIEWD) command is used in a CL program to retrieve the
values of one or more view attributes and place them into the specified CL variable(s).

RTNLIB Parameter

Specifies the name of the CL variable to receive the library name of the view. This is especially
useful when *LIBL is specified for the library name and the job’s library list is searched for the
view. This variable must be a character variable with a minimum length of 10 characters.

SQL Parameter

Specifies the name of the CL variable to receive the SQL statement used to create the view. This
variable must be a character variable. If the SQL statement is longer than the variable, the vari-
able will be filled with the leftmost characters of the SQL statement. If the statement is shorter
than the variable, the rightmost characters of the variable will be set to blanks.

SQLLEN Parameter

Specifies the name of the CL variable to receive the length of the SQL statement used to create
the view. This variable must be a five position decimal variable with no decimal positions.

VARSPECS Parameter

Specifies the name of the CL variable to receive the variable specifications. This variable must
be a character variable. The CL variable is filled with recurring instances of a data structure con-
taining all the elements of each variable definition. If the data structure is longer than the vari-
able, the variable will be filled with the leftmost characters of the data structure. If the data
structure is shorter than the CL variable, the rightmost characters of the CL variable will be set
to blanks.

The format of each occurrence the data structure is defined by the external data structure VAR-
SPECDS in the SEQUEL library.

VSPECCNT Parameter

Specifies the name of the CL variable to receive the number of variable specifications defined in
the view. This variable must be a five-position decimal variable with no decimal positions.

OPTIMIZE Parameter

Specifies the name of the CL variable to receive the optimization criteria indicated for the view.
This variable must be a character variable with a minimum length of 8 characters. Returned val-
ues can be: *TOTAL, *FIRSTIO, *MINWAIT, or *FINISH.

2-162 Sequel 11 Programmer’s Guide - Command Reference

ALWCPY Parameter

Specifies the name of the CL variable to receive the temporary result allowance specified for the
view. This variable must be a character variable with a minimum length of 6 characters.
Returned values can be: *YES, *NO, or *IFRQD.

MSG Parameter

Specifies the name of the CL variable to receive the status of the message setting specified for
the view. This variable must be a character variable with a minimum length of 4 characters.
Returned values can be: *YES or *NO.

UNIQUEKEY Parameter

Specifies the name of the CL variable to receive the value of the unique key setting specified for
the view. This variable must be a character variable with a minimum length of 5 characters. The
returned result is either *NONE, *ALL, or a left justified character representation of the number
of ordering fields to be used to establish uniqueness.

JTYPE Parameter

Specifies the name of the CL variable to receive the value of the join type setting specified for
the view. This variable must be a character variable with a minimum length of 8 characters.
Returned values can be: *INNER, *PARTOUT, or *ONLYDFT.

JORDER Parameter

Specifies the name of the CL variable to receive the value of the join order setting specified for
the view. This variable must be a character variable with a minimum length of 5 characters.
Returned values can be: *ANY or *FILE.

IGNDECERR Parameter

Specifies the name of the CL variable to receive the value of the ignore decimal errors setting
specified for the view. This variable must be a character variable with a minimum length of 4
characters. Returned values can be: *YES or *NO.

ACCPLN Parameter

Specifies the name of the CL variable to receive an indication of whether an access plan has
been included with the view definition. This variable must be a character variable with a mini-
mum length of 4 characters. Returned values can be: *YES or *NO.

DATFMT Parameter

Specifies the name of the CL variable to receive a value indicating the preferred date format
specified for the view. This variable must be a character variable with a minimum length of 6

RTVVIEWD (Retrieve View Description) Command 2-163

characters. Returned values can be: *USA, *ISO, *EUR, *JIS, *JL1, *MDY, *YMD, *DMY,
*JUL, *JL1, *FIELD, or *JOB.

DATSEP Parameter

Specifies the name of the CL variable to receive a value indicating the preferred date separator
specified for the view. This variable must be a character variable with a minimum length of 6
characters. Returned values can be: *BLANK, *NONE, *FIELD, *NULL, or a single character
that is the separator value. *NULL indicates that the view was created prior to the inclusion of
date/time support.

TIMFMT Parameter

Specifies the name of the CL variable to receive a value indicating the preferred time format
specified for the view. This variable must be a character variable with a minimum length of 6
characters. Returned values can be: *USA, *ISO, *EUR, *JIS, *HMS, *FIELD, or *JOB.

TIMSEP Parameter

Specifies the name of the CL variable to receive a value indicating the preferred time separator
specified for the view. This variable must be a character variable with a minimum length of 6
characters. Returned values can be: *BLANK, *NONE, *FIELD, *NULL, or a single character
that is the separator value. *NULL indicates that the view was created prior to the inclusion of
date/time support.

TEXT Parameter

Specifies the name of the CL variable to receive the value of the title specified for the view. This
variable must be a character variable with a minimum length of 50 characters.

Examples

RTVVIEWD VIEW(SEQUELEX/CUSTLIST) SQL(&SQL) SQLLEN(&LEN)

This command retrieves information from the CUSTLIST view in the SEQUELEX library. The
SQL statement text is placed into the &SQL variable, and the statement length is returned to the
&LEN variable.

RTVVIEWD VIEW(ORDERINQ) RTNLIB(&LIB) SQL(&SQL)
SQLLEN(&LEN) OPTIMIZE(&OPT) ALWCPY(&CPY)
MSG(&MSG) UNIQUEKEY(&UNIQ) JTYPE(&JTYPE)
JORDER(&JORD) TEXT(&TEXT) IGNDECERR(&DEC)

Retrieves information from the ORDERINQ view on the library list. The library name is
returned to the &LIB variable. All other view information is placed in the indicated variables.

2-164 Sequel 11 Programmer’s Guide - Command Reference

RUNCMD (Run Commands Using Sequel Selection) Command

The RUNCMD command will run a command or series of commands using a Sequel statement
or view for record selection. This list processing feature lets you run any AS/400 command
repetitively and fill in command Parameters with values from the select clause. All records
selected by the SQL statement or view will be processed with the command.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created prior to processing.
This view is automatically deleted when the command completes

With the exception of the SETVAR Parameter, Parameters for the RUNCMD command are
identical to those required by the Create View (CRTVIEW) command. You can override values
specified on the CRTVIEW definition and indicate new values to be used during this execution
of the retrieval.

The Parameter default of *SAME indicates that values supplied when the view was created
should apply during this execution. If an SQL statement is supplied on the command, values for
Parameters you do not specify default to those supplied with the CRTVIEW command. Refer to
the description of CRTVIEW starting on page 2-37 for a complete explanation of each Parame-
ter.

The outcome of decimal data errors is determined by the IGNDECERR Parameter. Decimal data
errors encountered while the view is processed will be represented as question marks (?) on the
RUNCMD if IGNDECERR(*NO) is used on the RUNCMD command or view. Failure to spec-
ify IGNDECERR(*YES) may cause view processing to terminate if an expression or selection
operation involving invalid decimal data occurs. If IGNDECERR(*YES) is specified, each
invalid decimal digit will be replaced with a zero digit, and an invalid sign will be coded as a
positive sign. Processing will not terminate if invalid decimal data is encountered during expres-
sion evaluation or record selection.

Null values will print as either "n/a" or a “¬”, depending on field length. This special value will
be left adjusted in character and date columns and right adjusted in numeric columns.

CMD Parameter

Enter a valid OS/400 command. You can enter multiple commands by using a semi-colon (;) as a
separator. Field names selected by the SQL statement or view can be referred to by prefixing the
field name with an ampersand (&). Use two ampersands (&&) if the substitution is to take place
within a quoted string.

Note: A semi-colon (;) is ALWAYS treated as the end of a command string, therefore you must
avoid using semi-colons within a command string.

SQL Statement Parameter

Use either an SQL statement or a view name on the VIEW Parameter.

RUNCMD (Run Commands Using Sequel Selection) Command 2-165

VIEW Parameter

Name of the Sequel view user space.

TEXT Parameter

The TEXT keyword may be specified if an SQL statement is used, but will be ignored if a view
name is given. The text, either from the command or the view, will appear at the top of the data
RUNCMD as a title.

SETVAR Parameter

Specify values for the variable definitions included in the view. Each element in the SETVAR
list identifies the variable name to be set and, optionally, the value it is to receive. If the value is
unspecified, the variable will receive the default value indicated by its definition.

If one or more variables are omitted from the SETVAR list, the runtime prompt display will
appear allowing them to be specified.

Examples

RUNCMD CMD('Print sql(''select cusno,ordno from sequelex/ordhead where
cusno=&&cusno'')') SQL('select * from sequelex/custmast')

This command prints a list of orders for each customer in the CUSTMAST file.

RUNCMD CMD(‘SNDMSG MSG(‘’Hello &&cname in &&cstte’’)
TOMSGQ(<your user id>)’) SQL(‘SELECT * FROM SEQUELEX/CUSTMAST
WHERE ROWID<=3’)

This command sends three messages on the AS/400. The message text uses the customer name
and state from the CUSTMAST file of the first three records.

DSPOBJD OBJ(SEQUELEX/*ALL) OBJTYPE(*ALL) OUTPUT(*OUTFILE)
OUTFILE(QTEMP/TEMPOUT)

RUNCMD CMD('WRKOBJLCK OBJ(&ODOBNM) OBJTYPE(&odobtp) ; MONMSG
SNDMSG MSG(''Object missing. Check JOBLOG'') TOUSR(*REQUESTER)')
SQL('select * from qtemp/tempout')

These two commands can be run from a Sequel script or CL program. The first command creates
a work file with object descriptions for all the objects in the SEQUELEX library. The second
command repetitively runs the WRKOBJLCK (Work with Object Locks) command for each
record in the QTEMP/TEMPOUT file. This RUNCMD incorporates a MONMSG command so
that RUNCMD will continue processing for all records in the TEMPOUT file. The SNDMSG
command sends a message to the user running the request that an object is missing.

In cases where semi colons would be used to separate command value elements such as multiple
email address in a recipient parameter, a comma must be used instead like so:

2-166 Sequel 11 Programmer’s Guide - Command Reference

RUNCMD CMD('EXECUTE VIEW(SEQUELEX/CUSTLIST)
RECIPIENT(''user.one@helpsystems.com, user.two@helpsystems.com'')')
SQL('select * from sequel/sqlexec')

RUNCMDVPT (Run a Command Over All Records) Command 2-167

RUNCMDVPT (Run a Command Over All Records) Command

The RUNCMDVPT command works only with a VPT view object—a ViewPoint shortcut file in
the ViewPoint Repository (.vptscript) that links to a host object.

This command is added to a Skybot job created during the C&DS migration process from itera-
tive jobs.

All of the command’s parameters are exactly the same as the RUNCMD command on page 2-
164. The one parameter that differentiates RUNCMDVPT from RUNCMD—the VPT parame-
ter—is documented below.

VPT Parameter

This parameter names the ViewPoint file to run. Specify the name and path to the VPT file in the
Repository using the format:

*REPOSITORY/path/vptfile.vptview

2-168 Sequel 11 Programmer’s Guide - Command Reference

RUNSCRIPT (Run Script) Command

This command allows you to run a script interactively or in batch. If the script contains runtime
variables, you will be prompted prior to the job running.

SCRIPT Parameter

Script Name:

The SCRIPT keyword names the script you want to run. You must supply the script name and it
must match a SQLSCRIPT or SQLSCRIPTP user space. In order to run the script, you
must have operational authority to the script definition and its underlying objects, and
operational and read authority to all database files used by the script.

Indicates the name of the script to be run.

Library Name:

*LIBL: The current job library list will be searched for the script(s).

*CURLIB: The job's current library (*CURLIB) will be searched for scripts.

Library-name: Specific library name

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

JOBQ Parameter

Specifies whether the script should be run interactively or in batch and which job queue should
be used to run the script.

*NONE: The job is run interactively. The JOBD and PMPSBM Parameters are ignored.

*SETDFT: The job queue is determined from the value defined in the Sequel user defaults.

*JOBD: The submitted job is placed on the job queue named in the specified job descrip-
tion.

job-queue-name:Specify the name (job-queue-name) of the job queue on which the submitted
job is placed.

RUNSCRIPT (Run Script) Command 2-169

JOBD Parameter

A Job Description entered here will override the internal defaults.

*SETDFT: The job description is determined from the value defined in the Sequel user
defaults.

*JOB: The current job’s job description is used as the job description of the submitted
job.

*USRPRF: The job description defined in the user profile is used as the job description of
the submitted job.

job-description-name:Specify the name (job-description-name) of the job description used for
the job.

PMPSBM Parameter

If the job is to be submitted, this determines if the submit command is to be prompted.

*NO: When the job is submitted, the Submit Job (SMBJOB) command is not
prompted.

*YES: When the job is submitted, the Submit Job (SMBJOB) command is prompted so
any Parameters can be changed.

DTSTYLE Parameter

Specifies the “preferred” style for date and time variables when running a script. All DATE vari-
able values must conform to the format indicated by the DTSTYLE Parameter. The DTSTYLE
of RUNCRIPT must match the DTSTYLE of any Sequel command used in the script.

The default value, *JOB, indicates that the current format specified for your job will be used as
the preferred date format for the date/time values returned by the view. Other values are *USA,
*ISO, *EUR, *JIS, *MDY, *DMY, *YMD, *JUL, *JL1, and *SETDFT.

Four values are provided by the DTSTYLE Parameter. They are:

Date format
Date separator
Time format
Time separator

Examples

RUNSCRIPT SCRIPT(SEQUELEX/CUSTORDS)

Runs the script CUSTORDS from SEQUELEX. If the script has variables, as CUSTORDS does,
you will be prompted and can use F9=Run or F14=Submit. If the script does not have variables,
it will run interactively.

2-170 Sequel 11 Programmer’s Guide - Command Reference

RUNSCRVPT (Run a VPT Script Object) Command

The RUNSCRVPT command works only with a VPT script object—a ViewPoint shortcut file in
the ViewPoint Repository (.vptscript) that links to a host script object.

This command is typically used when creating Skybot jobs from ViewPoint Repository script
objects.

All of the command’s parameters are exactly the same as the RUNSCRIPT command on page 2-
168. The one parameter that differentiates RUNSCRVPT from RUNSCRIPT—the VPT parame-
ter—is documented below.

VPT Parameter

This parameter names the ViewPoint file to run. Specify the name and path to the VPT file in the
Repository using the format:

*REPOSITORY/path/vptfile.vptscript

SCHSCRIPT (Search Script) Command 2-171

SCHSCRIPT (Search Script) Command

Starting with version R10M23, the new Search Script (SCHSCRIPT) command allows you to
quickly and easily search for occurrences of any element defined in your Sequel Scripts. You can
also do mass-search and replace operations without creating source files and queries used in
alternate methods.

Built-in reports (SCRFNDRPL) will show you where specified items were found and, if
replaced, where and how many times replacement occurred.

SCRIPT Parameter

Indicates the name and library of the script User Space to be searched.

Script Name

*ALL: All the scripts in the library will be searched.

generic*: Specify the generic name of the scripts to be searched. A generic name is a char-
acter string that contains one or more characters followed by an asterisk (*). If a generic
name is specified, all scripts that have names with the same prefix as the generic name
are searched.

name: Specify the name of the script to be searched.

Script Library

*CURLIB: Use the current library for the job.

name: Use the library name that contains the scripts.

FIND Parameter

Specify up to 50 characters of text to search for. The text must contain at least one non-blank
character and be enclosed in quotes. This parameter is required.

REPLACE Parameter

Up to 50 characters of text to replace the text found. Text is enclosed in quotes.

*NONE: No replacement will be made, making this a find only search.

TYPE Parameter

This defines which part of the script is to be searched. Exception is *VAR.

*ALL: All aspects of the script will be searched.

2-172 Sequel 11 Programmer’s Guide - Command Reference

*VAR: Only the prompted variable definitions will be searched in conjunction with the
Variable Option Parameter.

*LINE: Only the script line statements will be searched.

*TITLE: Only the script title will be searched.

CASE Parameter

This specifies whether the search string should ignore the case of the data it is searching or if the
case should match.

*IGNORE: The case of the search data is not a factor in the selection.

*MATCH: The case of the search data must exactly match the search FIND string.

If the REPLACE other than *NONE is used, the replaced value will be exactly as entered,
regardless of this selection.

OUTPUT Parameter

Specifies whether to print a simple list of the selected scripts and the number of matches made
based on the FIND string.

*YES: Print the list. The spooled file is named SCRFNDRPL.

*NO: Do not print the list.

VARELEM Parameter

Specifies which elements of runtime variables are searched. There are four elements of a vari-
able that can have text that is searchable:

Default Value
Prompt Text
Integrity Check
Extended Help

Parameter options are:
*ALL All four elements of the variable are searched.
*DFT: Only searches the Default element of the variable.
*PMT: Only searches the Prompt Text element of the variable.
*INT: Only searches the Integrity Check element of the variable.
*HLP: Only searches the Extended Help element of the variable.

SCRETURN (Return Script View) Command 2-173

SCRETURN (Return Script View) Command

A Sequel Script View combines the multi-step processing capabilities of standard scripts with
the ability to direct output to multiple output options like a view. A script view is defined by a
single element—the SCRETURN command as the last statement in the script.

Using the SCRETURN command, a script view will return a single, final result set of data—just
like a view. Because a script view ‘acts’ like a view, you can direct its output from the ViewPoint
Explorer with the same ease that you can with a Sequel view. Right-click a script view and select
display or print, create IBM i or remote database tables, save PC results locally or on the IFS and
more. This gives your scripts a level of flexibility they never had before.

See the ViewPoint User Guide for more information on Script Views.

With the exceptions noted below, parameters for the SCRETURN command are identical to
those required by the Display (DISPLAY) command (page 2-63).

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

ALWOPT Parameter

Controls whether the data display will provide an entry field adjacent to each record and allow
options to be entered and run. This feature allows users to perform “drill–down” opera-
tions and proceed from one view to underlying or related data in another.

*NO: the data display will not present option entry fields to the user.

*YES: the data display will allow option entry. Options in the current option file will
control how users may use the “drill–down” capability.

Note: ALWOPT is only available for a SERVER value of *SEQUEL.

2-174 Sequel 11 Programmer’s Guide - Command Reference

TEXT Parameter

The TEXT keyword may be specified if an SQL statement is specified. It should not be used if a
view name is given. The text, either from the command or the view, will appear at the top of the
data display as a title.

SERVER Parameter

Use this Parameter to specify the target database for the request. For queries running on the local
machine, this parameter allows selection of the faster SQL Query Engine (SQE) which can offer
dramatic performance improvement for longer running queries. Users will normally ignore this
parameter when running predefined Sequel views.

*SAME: For an existing view, the server specified when the view was created will pro-
cess the request. If *CREATE is specified for the VIEW parameter, then *LOCALSYS
will be used if the user's Sequel Default database is *LOCALSYS, otherwise *SEQUEL
will be used. If an SQL statement is specified, then the request will be processed on the
local machine by the Classic Query Engine (CQE) using *SEQUEL syntax.

*SEQUEL: The view or SQL statement must use SEQUEL statement syntax and the request
will be processed on the local machine using the CQE.

*LOCAL: The view or SQL statement contains *SEQUEL or native SQL/400 statement
syntax and the request will be processed (using SQL naming - lib.file) on the local
machine. The default schema (usually the library with the same name as the current user,
if it exists) will be used to resolve the library name of unqualified UDFs or files in the
FROM clause. If the statement is written using *SEQUEL syntax, the SYNTAX param-
eter must specify *SEQUEL (or *SAME) in order for the SQL statement to be con-
verted to native SQL. The query will be run by the machine using the SQL Query
Engine (SQE).

*LOCALSYS: The view or SQL statement contains *SEQUEL or native SQL/400 statement
syntax and the request will be processed (using system naming or *SYS - lib/file) on the
local machine. The library list of the current job will be used to resolve the library name
of unqualified UDFs or files in the FROM clause. If the statement is written using
*SEQUEL syntax, the SYNTAX parameter must specify *SEQUEL (or *SAME) in
order for the SQL statement to be converted to native SQL. The query will be run by the
machine using the SQL Query Engine (SQE).

server-name: The view or SQL statement will be processed on a remote database server. The
server-name must correspond to a valid server definition in the SEQUELHost file. The
view or SQL statement can be written in *SEQUEL or in the native statement syntax for
the specified database server. If written in *SEQUEL, the following SYNTAX parame-
ter must specify *SEQUEL in order for the SQL statement to be converted to native
SQL.

SYNTAX Parameter

This parameter is used when providing an SQL statement on the SQL parameter above and spec-
ifies the specific SQL syntax used in writing the SQL statement. This provides the ability to
write an SQL query using familiar *SEQUEL syntax using elements such as JOIN, CVTDATE
and named references to derived fields while connecting to a remote database or local machine.

SCRETURN (Return Script View) Command 2-175

For local queries, this also allows using *SEQUEL syntax for ease of use while running the
query against the faster SQE.

*SAME: Required when running views. For statements provided on the SQL parameter,
*SAME will be treated like SYNTAX(*SERVER).

*SERVER: The SQL statement is written in the syntax of the database (SEQUEL, MySQL,
SQLServer, Oracle, etc.) specified on the SERVER Parameter. No conversion from
*SEQUEL to native SQL takes place.

*SEQUEL: The SQL statement or view is written in *SEQUEL syntax. If a SERVER other
than *SEQUEL is specified, the statement is automatically converted to the standard
SQL syntax of that database (MySQL, SQL Server, Oracle, etc.); references to multi-
member files, multi-format files and ambiguous field names (unqualified field names
that exist in more than one file in the FROM clause) cannot be converted and will cause
the execution of the view or SQL statement to fail. See our Sequel Reference Guide
appendix for a more complete list of *SEQUEL features that will not automatically con-
vert to native SQL.

Output characteristics

Decimal data errors encountered while the view is processed will be represented as question
marks (?) on the display if IGNDECERR(*NO) is specified on the DISPLAY command or view.
Failure to specify IGNDECERR(*YES) may cause view processing to terminate if an expres-
sion or selection operation involving invalid decimal data occurs.

If IGNDECERR(*YES) is specified, each invalid decimal digit will be replaced with a zero
digit, and an invalid sign will be coded as a positive sign. Processing will not terminate if invalid
decimal data is encountered during expression evaluation or record selection.

Null values will appear on the display as either “n/a” or a “¬”, depending on field length. This
special value will be left adjusted in character and date columns and right adjusted in numeric
columns.

2-176 Sequel 11 Programmer’s Guide - Command Reference

SEQSETJVAE (Set Sequel Java Environment) Command

The SEQSETJVAE command is used to define, by user, the custom JAVA_HOME environment
variable, and a QIBM_JAVA_PROPERTIES_FILE, which are applied to views using
SERVER(*LOCAL/*LOCALSYS), or Views over remote databases.

When such a view is run, and if the profile running it has had custom settings entered using
SEQSETJVAE, the job will use those settings. If there are no custom settings for that profile, the
settings for *ALL will be used. If there are no custom settings for *ALL, the system default
JAVA_HOME environment variable and a QIBM_JAVA_PROPERTIES_FILE will be used.
This feature is useful when the system defaults for these settings satisfy other application
requirements, but are not suitable for Sequel views.

USRPRF Parameter

*ALL: Sets the default for all users.

USER: Specify the individual profile to set up with their own JAVA_HOME and
QIBM_JAVA_PROPERTIES_FILE environment variables.

After pressing enter or F10, the current settings for the next 2 parameters displays.

JAVAHOME Parameter

Sets the path of the Home environment variable to be used.

*NONE: Use the system default

path-value: Enter the path to the Java properties file to use.

JAVAPROP Parameter

Sets the path of the systemdefault.properties file to be used.

*NONE: Use the systems default.

path-value: Enter the path to the System properties file to use.

Example:

SEQSETJVAE USRPRF(MYPROFILE) JAVAHOME('/QOpenSys/QIBM/ProdData/JavaVM/
jdk80/64bit') JAVAPROP('/home/myfolder/SystemDefault.properties')

SETAUDDFT (Set Audit Default) Command 2-177

SETAUDDFT (Set Audit Default) Command

The Set Audit Default (SETAUDDFT) command gives you an easy way to view and modify the
audit switch for Sequel users. Through an interactive program, you can review and change the
setting for each user. It also gives you an easy way to set the switch for all users on or off. You
can also use the Set Default (SETDFT) command to change a user's switch value, but you will
probably prefer to use the displays described below.

The SETAUDDFT command can be run from command entry or by selecting option 3 from the
audit menu. The command has no parameters. Because it invokes an interactive program, it can-
not be run in a batch environment.

When the command is run, a display is opened to show the auditing status for each Sequel user.

2-178 Sequel 11 Programmer’s Guide - Command Reference

SETDFT (Set Sequel Defaults) Command

This command lets you work with the default values used by the user interface, report writer, and
“Work With” displays. The command can be entered with or without specifying values to be
changed. If no values are specified, the command will present a display at the workstation and
must be run interactively.

The user(s) that you are intending to affect should not be currently using any Sequel displays.
Because the user interface and “Work With” displays update a user’s data area with their last
used values, your changes will be overlaid if they entered one of these displays before you com-
pleted updating their defaults.

USRPRF Parameter

The USRPRF Parameter identifies the name of the default data area to be viewed/changed. If no
value is specified, your user profile is assumed and a display showing your current default val-
ues will be presented.

*CURRENT: Accesses the defaults in the data area for your current user profile name.

*DFT: Presents the Sequel product defaults stored in the SQ#DFT data area. Change
these values to determine the base values for new users that access Sequel after your
changes are made.

user-profile: Accesses the Sequel product defaults stored in the data area for the named user.
If one does not exist prior to the SETDFT command, it will be created automatically.

DFTFLD and NEWVAL Parameters

The DFTFLD Parameter identifies the name of the default that you want to set. The NEWVAL
Parameter indicates the new setting for the indicated value. If these Parameters are not supplied,
an interactive display will appear and you can set any of the defaults for the indicated profile. If
these values are supplied, the indicated default is changed and no display will appear.

SETDFT (Set Sequel Defaults) Command 2-179

Choose field and value combinations from the table below.

Examples

SETDFT USRPRF(GREG)

The displays allowing you to set the user defaults for user profile GREG will appear.

SETDFT USRPRF(*DFT)

Accesses the product default values. Once you update these values, new users will receive them
as their initial defaults when they begin using Sequel.

SETDFT USRPRF(MIKE) DFTFLD(REPRUN) NEWVAL(Y)

The “repeatable run” flag is set to N for user profile MIKE. No displays will appear.

Field Value Description
REPRUN Y F9 from the runtime prompt display will run the

view and then re-display the prompt so that it can
be run again. Equivalent to pressing F18 from the
runtime prompt display and typing “Y”

N F9 from the runtime prompt display will run the
view and exit. Equivalent to pressing F18 from
the runtime prompt display and typing “N”

JOBD Library/job description The default job description to be used
JOBQ Library/job queue The default job queue to be used
OUTQ Library/output queue The default output queue to be used
OPTFILE Library/file name The default option file to be used
SNODTA Y An E-mail will sent even if the query results in no

records being written to the attachment file.
N No E-mail will sent if the query results in no

records being written to the attachment file.

2-180 Sequel 11 Programmer’s Guide - Command Reference

SETJDEOWA (Set Oracle JDE OneWorld / EnterpriseOne
Attributes) Command

Use this command to configure reporting interoperability with Oracle JD Edwards OneWorld or
EnterpriseOne. The command creates four files in the 'rio/lib' folder of the IFS:
• JDBJ.ini
• JDEDRIVER.cfg
• JDEOW.cfg
• SSINEROP.ini

JDE Release (JDEOWRLS)

Enter the JDE OneWorld or EnterpriseOne release installed on this IBM i system.
The possible values are:

*ERP8.12 Select this option if you use JDE EnterpriseOne 8.12.
*ERP9.0 Select this option if you use JDE EnterpriseOne 9.0.
*ERP9.1 Select this option if you use JDE EnterpriseOne 9.1.

JDE System Library (JDEOWSYSLB)

Enter the name of the JDE OneWorld or EnterpriseOne system library. This is the name of the
library where JDE system control files reside.

JDE Application Security (APPSECOPT)

This option enables or disables the JDE OneWorld or EnterpriseOne application security integra-
tion feature.

The possible values are:

*ENABLE JDE Application Security Integration is enabled. Application security defined in
JDE OneWorld or EnterpriseOne will be honored. (A server restart is required)

*DISABLE JDE Application Security Integration is disabled. Application security defined
in JDE OneWorld or EnterpriseOne will not be honored. (A server restart is required)

JDE Application Security Run Authority Override (RUNAUTHOVR)

This option controls how application security is applied for tables that are shared by multiple
JDE OneWorld or EnterpriseOne applications.

The possible values are:

SETJDEOWA (Set Oracle JDE OneWorld / EnterpriseOne Attributes) Command 2-181

*YES The run authority override is enabled. A JDE OneWorld or EnterpriseOne table
that is shared by multiple applications will be available to the user if the user has run
authority to at least one of the applications that uses the table.

*NO The run authority override is disabled. A JDE OneWorld or EnterpriseOne table
that is shared by multiple applications will not be available to the user if the user is
secured from running at least one of the applications that uses the table.

Application User Profile Signon (SNGLUSRPRF)

This prompt allows you to enable or disable JDE OneWorld or EnterpriseOne Application User
signon.

The possible values are:

*ENABLE JDE application user signon is enabled. (A server restart is required)

*DISABLE JDE application user signon is disabled. (A server restart is required)

JDE Authentication System (AUTHSYSNAM)

This is the name of the IBM i system used to authenticate the JDE OneWorld or EnterpriseOne
user.

The possible values are:

*LOCAL The authentication system is the local IBM i system.

Character ValueThe name of the authentication IBM i system.

Authentication User Name (AUTHSYSUSR)

This is the IBM i database user used to authenticate the JDE OneWorld or EnterpriseOne user.

The possible values are:

*NONE The database user is not required (only for a local IBM i system).

Character ValueThe user profile for the IBM i system used for JDE OneWorld or Enterprise-
One authentication.

Authentication Password (AUTHSYSPWD)

This is the IBM i database password used to authenticate the JDE OneWorld or EnterpriseOne
user.

The possible values are:

*NONE The database password is not required (only for a local IBM i system).

Character ValueThe password for the IBM i system used for JDE OneWorld or EnterpriseOne
authentication.

2-182 Sequel 11 Programmer’s Guide - Command Reference

JDE Program Library (JDEOWPGMLB)

Enter the name of the JDE OneWorld or EnterpriseOne program library. This is the name of the
library where JDE program files reside. If you are using remote authentication, specify the name
of the program library on the remote IBM i system. Otherwise, specify the name of the program
library on the local IBM i system.

JDE Remote System Library (JDEOWRSYLB)

This is the name of the JDE OneWorld or EnterpriseOne system library on a remote IBM i sys-
tem when using the remote system for authentication.
The possible values are:

*LCLSYSLB The name is the same as the local JDE OneWorld or EnterpriseOne system
library.

Character ValueThe name of the JDE OneWorld or EnterpriseOne system library on the remote
IBM i system.

IASP Name (IASPNAME)

This is the name of the IASP where JDE OneWorld or EnterpriseOne libraries reside.
The possible values are:

*NONE JDE OneWorld or EnterpriseOne libraries are not stored on an IASP.

Character ValueThe name of the IASP where JDE OneWorld or EnterpriseOne libraries reside.

IASP User Profile (IASPUSER)

This is the host user profile to access JDE OneWorld or EnterpriseOne libraries on the IASP.
The possible values are:

*NONE JDE OneWorld or EnterpriseOne libraries are not stored on an IASP.

Character ValueThe IBM i user profile used to access JDE OneWorld or EnterpriseOne librar-
ies on the IASP.

IASP Password (IASPPASS)

This is the password for the IBM i user profile to access JDE OneWorld or EnterpriseOne librar-
ies on the IASP.
The possible values are:

*NONE JDE OneWorld or EnterpriseOne libraries are not stored on an IASP.

Character ValueThe password for the IBM i user profile to access JDE OneWorld or Enterpris-
eOne libraries on the IASP.

SQDATE (Add/Remove SQDATE data) Command 2-183

SQDATE (Add/Remove SQDATE data) Command

If the dates stored in your database do not have a DATE data type you will often need to convert
them from your standard notation into a form that is more suitable for comparison, manipulation,
or presentation. Sequel gives you two ways to do this:

CVTDATE function
This function converts a field to a field with a DATE data type. You can present the derived field
in any format using the CHAR function. See the appendix of the Sequel SQL Reference Guide
for additional information.

SQDATE data file
This data file is restored to the SEQUELEX library when Sequel is installed. Its records contain
field definitions for virtually all date formats. The SQDATE file can be joined to your database
values in order to retrieve Julian offsets, alternative formats, or presentation quality date values.

The SQDATE file is installed on your system without any records in it. Date records can be
added and removed using the SQDATE command, which is also in the SEQUELEX library.

You will probably need to run the SQDATE command only once. After the appropriate set of
records has been placed into the file, you will probably not need to use the command again.

The format of the command is:

The beginning and ending year are required Parameters and must specify years between 1901
and 2099. The ending year must not be less than the beginning year. Use the OPTION Parameter
to indicate whether records should be added (*ADD) or removed (*RMV) from the date file.
Each time the *RMV option completes, the file is automatically reorganized.

Ten years of records in the SQDATE file will occupy approximately 0.5 megabytes of storage. It
takes approximately one minute to add or remove ten years of records in the date file.

Examples

SQDATE BEGIN(1985) END(1995) OPTION(*ADD)

Records between January 1, 1985 and December 31, 1995 (inclusive) are added to the SQDATE
file.

SQDATE BEGIN(1985) END(1990) OPTION(*RMV)

Records between January 1, 1985 and December 31, 1990 (inclusive) are deleted from the
SQDATE file. It is then reorganized to remove the deleted records.

2-184 Sequel 11 Programmer’s Guide - Command Reference

Working with data in the SQDATE file

Each record in the SQDATE record format contains the following fields:

Field Description Attribute
MMDEC Month Dec(2,0)
DDDEC Day Dec(2,0)
YYDEC Year Dec(2,0)
CDEC Century code Dec(1,0)
MMCHR Month Char(2)
DDCHR Day Char(2)
YYCHR Year Char(2)
CCHR Century code Char(1)
MDYDEC MMDDYY date Dec(6,0)
DMYDEC DDMMYY date Dec(6,0)
YMDDEC YYMMDD date Dec(6,0)
MDYCHR MMDDYY date Char(6)
DMYCHR DDMMYY date Char(6)
YMDCHR YYMMDD date Char(6)
MDYYDC MMDDYYYY date Dec(8,0)
DMYYDC DDMMYYYY date Dec(8,0)
YYMDDC YYYYMMDD date Dec(8,0)
MDYYCH MMDDYYYY date Char(8)
DMYYCH DDMMYYYY date Char(8)
YYMDCH YYYYMMDD date Char(8)
YYJULD YYDDD date Dec(5,0)
YYJULC YYDDD date Char(5)
YYJLDL YYYYDDD date Dec(7,0)
YYJLCL YYYYDDD date Char(7)
DAY Day of week (Monday, Tuesday, etc.)
DAYSHT Abbreviated day of week (Mon, Tue, etc.)
MONTH Month (January, February, etc.)
MTHSHT Abbreviated month (Jan, Feb, etc.)
LNGDTU Long date - month day, year (December 25, 2010)
LNGDTE Long date - day month year (25 December 2010)
FULLYR Year (with century)
JUL1 Day offset from 1 Jan 1901
JUL2 Day offset from 1 Jan current year

Once records have been placed into the file (using the SQDATE command) you can join to the
appropriate field using your date and retrieve other fields representing the same date value.

SQDATE (Add/Remove SQDATE data) Command 2-185

Example

Assume for the following example that the SQDATE command has been used to load appropri-
ate records into the SQDATE file.

Suppose we need to know the difference between two dates in the order file. The order entry date
is stored in three fields: coomn, coody and cooyr. The invoice date is also stored in three fields:
invmn, invdy, and invyr. To determine the number of days between the order date and the billing
date, do this:

DISPLAY 'SELECT ordno, cuspo, lngdtu.1 name(ordate),
 lngdtu.2 name(invdate), jul1.3-jul1.2
 FROM ordhead,sqdate,sqdate
 JOIN BY cooyr=yydec.2 AND coomn=mmdec.2
 AND coody=dddec.2 AND invyr=yydec.3
 AND invmn=mmdec.3 AND invdy=dddec.3
 WHERE invyr>0 and cooyr>0'

The SQDATE file appears in the FROM clause once for each date to be converted. Since two
dates need conversion, it is listed twice. All forms of each date are available after the join, and so
the difference between their Julian forms (JUL1) can be determined by subtraction.

Note: The preceding examples can be used even if the date is a single field by using the corre-
sponding date form in the SQDATE file.

The SQDATE file can also be used to:

change a Julian date of the form YYDDD into standard form
retrieve an English format (i.e. September 18, 1992)
convert between YMD, MDY, DMY and Julian forms
retrieve the day of the week for a given date

2-186 Sequel 11 Programmer’s Guide - Command Reference

SQJCRO (Run CRO Report) Command

Use the SQJCRO command to run a CRO Report (*USRSPC with SQLRPTC attribute) on the
Sequel Java Server running on the local host. The SQJCRO process requires Sequel version
R11M15 (and higher) and Client Reports using Crystal 11.

The timeout value (starting with version 11.17) is set using the value of the WAITTIME param-
eter for the SEQUELWI/SWIVPDFT command.

Note: For SQJCRO processing, all fonts must be placed in:

/QOpenSys/QIBM/ProdData/JavaVM/jdk80/64bit/jre/lib/fonts

or

/QOpenSys/QIBM/ProdData/JavaVM/jdk80/32bit/jre/lib/fonts

REPORT Parameter

This is the Sequel object to run on the Sequel Java Server. This object is a *USRSPC with an
attribute of SQLRPTC.

PCFMT Parameter

Choose one of the following:

*PDF: Create PDF output.

*XLS: create XLS output

TOSTMF Parameter

Specifies the path and name of the PC stream file that receives the records. If the path and file
name is not valid, an error message is issued, and the command does not complete successfully.

Indicate a valid PC path and file name. It may contain up to 256 characters.

Path names are entered left-to-right, beginning with the highest level directory and ending with
the name of the object to be created. The name of each component in the path is separated by a
slash (/) or back slash (\); for example;

'/Dir1/Dir2/Name.ext' or '\Dir1\Dir2\Name.ext'

Path Rules
A '/' or '\' at the beginning of a path name means that the path begins at the topmost directory, the
“root” (/) directory. For example, ‘/Dir1/Dir2/Name.extg’ where /Dir1 is a subdirectory of the
“root”.

SQJCRO (Run CRO Report) Command 2-187

If the path name does not begin with ‘/’ or ‘\’, the path is assumed to begin at the current direc-
tory of the user entering the command. For example, ‘/Dir1/Name.ext’ where Dir1 is a subdirec-
tory of the users current directory.

If the path begins with a’~; followed by ‘/’ or ‘\’, the path is assumed to begin at the home direc-
tory of the user entering the command. For example, ‘~/Dir1/Name.ext’ where Dir1 is the subdi-
rectory of the home directory for UserName.

Note: Directories in a path MUST exist prior to running the command. Current directory is
changeable by command. The home directory is defined in the user profile.

EMLMSG Parameter

If the recipient parameter is used to send e-mail, a message can be sent with the attachments. Up
to 1000 characters of message can be sent. Text is continuous without paragraph breaks.

*DFT: The default text is built from the command.

*ESNDDFT: The data in ESNDUSR, for keyword "MESSAGE", is used as the default.

*NONE: No message text is sent with the attachments.

text: The text is automatically enclosed in quotes and sent with the attachment.

EMLSBJ Parameter

Specify the subject line that will be sent with the e-mail.

* The data in file ESNDPF for keyword "SUBJECT" is used as the default.

Subject: Up to 80 characters of mixed case text.

OUTQ Parameter

This optional parameter specifies the OUTQ used if you wish to print the output. The output will
be spooled to a USERASCII print file. If specified, the PCFMT parameter must be specified as
*PDF. This type of file is only intended for a personal computer printer

SETVAR Parameter

Specify values for the variable definitions included in the view. Each element in the SETVAR
list identifies the variable name to be set and, optionally, the value it is to receive. If the value is
unspecified, the variable will receive the default value indicated by its definition.

If one or more variables are omitted from the SETVAR list, the run time prompt display will
appear allowing them to be specified.

2-188 Sequel 11 Programmer’s Guide - Command Reference

SETPJLTYPE

This optional parameter specifies the manufacturer of the printer for which PJL (Printer Job Lan-
guage) will be created. If specified, the PCFMT parameter must be specified as *PDF.

*NONE: PJL will not be generated.

*HP: The printer manufacturer is HP.

PJLDRAWER

This optional parameter is used when a manufacturer has been specified in SETPJLTYPE
parameter. If specified, the PCFMT parameter must be specified as *PDF.

*NONE: No drawer will be defined with PJL.

0: No drawer will be defined with PJL.

1 - 9: This drawer will be specified to be used in the PJL.

A Note About Client Report Fonts
Starting with Sequel version R11M15, if you use a specific fonts in Crystal Reports 11 and
higher (like a bar code font), use the following steps to ensure the SQJCRO process can find the
fonts. Since these fonts are already licensed, copying to the specified location should not present
any copyright issues.
Fonts must be supported by Java. This process will not support UFL (User Function Library)
fonts that work by creating a DLL that Crystal Reports accesses internally which is for Windows
only.

Steps
1. Create a zip file of the folder C:\Windows\Fonts called Fonts.zip. Make sure Fonts.zip has

the folder Fonts at the top-most level.
2. FTP Fonts.zip to the host(s) which will be used for Java CRO to the /tmp directory.
3. On the host, enter on a command line:

 CPYFRMARCF FROMARCF('/tmp/Fonts.zip') TODIR('/rio/lib')

SQJSTRSVR (Start Sequel JAVA Server) Command 2-189

SQJSTRSVR (Start Sequel JAVA Server) Command

The SQJSTRSVR command is used to start the Sequel Java Server. The Sequel Java Server can
be used to perform functions that use Java without the need to continually create Java Virtual
Machines (JVMs).

Processes that are performed by the Sequel Java Server are logged to files in the IFS folders /
SEQUEL/logs or /SCSERVER10/logs, depending on the name of the product library.

Logging Level (LOGLVL)

Sets the level of logging in the log file. Possible values are:

*INFORM: Sets a basic level of logging.

*DEBUG: Sets an intermediate level of logging.

*TRACE: Sets the most detailed level of logging.

LOGSIZE Parameter

Sets the maximum size of the log file. When the log file reaches the specified size, a new log file
will be created. The current log is saved.

*SMALL: Sets a maximum size of 10 MB.

*MEDIUM: Sets a maximum size of 20 MB.

*LARGE: Sets a maximum size of 30 MB.

*MAX: Sets a maximum size of 50 MB.

LOGSAVE Parameter

Determines the maximum number of log files that will be saved.

*SMALL: No more than 5 log files will be saved.

*MEDIUM: No more than 10 log files will be saved.

*LARGE: No more than 15 log files will be saved.

*MAX: No more than 20 log files will be saved.

The following commands were added in conjunction with SQJSTRSVR:

SQJCRTENV - Adds the JOBQ entries and routing entries in *SBSD QCMN.

SQJDLTENV - Removes the JOBQ entries and routing entries in *SBSD QCMN.

SQJENDSVR - Use to end the Sequel Java Server. This command has no parameters.

2-190 Sequel 11 Programmer’s Guide - Command Reference

SQLCLOSE (Sequel Close Connection) Command

Issue the SQLCLOSE command to end the connection to a defined remote database server. The
command has a single parameter.

SERVER Parameter

Specify the name of the defined remote database server.

SQLCONNECT (Sequel Connect) Command

Sequel includes a remote server connection command, SQLCONNECT that can be run from the
command line to test a defined remote database connection definition. If the connection fails,
messages regarding the failure will be returned to the joblog and command entry display. The
command has a single parameter.

SERVER Parameter

Specify the name of the defined remote database server.

SQLLICLCK (Sequel License Locks) Command 2-191

SQLLICLCK (Sequel License Locks) Command

The Sequel License Locks (SQLLICLCK) command displays jobs that are holding Sequel
licenses. In addition to the job name, the user that locked the file and the time of the lock is dis-
played. Enter the command to open the screen like so.

The following options and functions are available:

Option 5: Enter this value for any job to view details.

F5: Press to refresh the screen.

F11: Press to release locks for job which are not active and refresh the screen. The
job should no longer appear, meaning the lock has been released.

2-192 Sequel 11 Programmer’s Guide - Command Reference

SQVER (Sequel Version) Command

The SQVER command shows you what version of Sequel that is installed, version of OS/400,
security level and the model and serial number of your machine. The screen looks like the one
below:

STMFVARSUB (Stream File Variable Substitution) Command 2-193

STMFVARSUB (Stream File Variable Substitution) Command

The STMFVARSUB command searches the text in an input file, replaces any named variables
with defined database field values, and produces an output file containing the merged text and
database values. This command can be used in conjunction with the ESEND command ESND-
MAIL to create merged broadcast e-mails.

INFILE Parameter

Specify the name of the text file on the IFS containing text and variables.

OUTFILE Parameter

Specify the name of the text file to create on the IFS containing the merged database values.

REPLACE Parameter

Specifies whether an existing file will be replaced with a new one.

*NO: If a PC document with this name already exists in the folder specified by the
OUTFILE Parameter, the operation is not performed and the existing PC document is
left unchanged.

*YES: If a PC document with this name already exists in the folder specified by the
OUTFILE Parameter, it is replaced by the records retrieved from the view.

SETVAR Parameter

Specify values for the variable definitions included in the file named in the INFILE Parameter.
Each element in the SETVAR list identifies the variable name to be set and, optionally, the value
it is to receive. If the value is unspecified, the variable will receive the default value indicated by
its definition.

If one or more variables are omitted from the SETVAR list, the runtime prompt display will
appear allowing them to be specified.

2-194 Sequel 11 Programmer’s Guide - Command Reference

TABLE (Execute To A File) Command

The TABLE command places the results of a tabling view into a database output file or a folder
document. It is identical to the EXECUTE command, except that it lets you override the view
that the table would normally access. The command syntax is shown below.

If output is sent to a database file, Sequel checks it for compatibility with the tabling view. If
compatible, the new data can replace or be appended to any existing records in the file.

In addition, Sequel can create an empty outfile containing no records, but having the format of
the view. The file can be used in compiling a HLL program that will use the Open SQL File
(OPNSQLF) command.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created from the statement
prior to processing. This view is automatically deleted when the command completes.

If you choose to supply an SQL statement or view that is different from the one originally used
during table design, Sequel will verify that the new query is compatible with the table definition.
If it is not compatible, Sequel will inform you that you must review the table definition
(DSNTABLE) using the new view before the table can be run.

With the exception of the SERVER and SYNTAX parameters, all other parameters on the
TABLE command are identical to those required by the Create View (CRTVIEW) command on
page 2-37.

For an explanation of the SERVER and SYNTAX parameters, refer to the DISPLAY command
on page 2-63.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

TABLE Parameter

The TABLE keyword names the table you want to run. You must supply the table name and it
must match a SQLTBLV user space created with the Design Table (DSNTABLE) command. In
order to run the table, you must have operational authority to the table definition and its underly-
ing view user space, and operational and read authority to all database files used by the view.

SQL Parameter

This is the SQL statement to be used during this execution of the table. It overrides the view
used when the table was designed. A temporary view named QTEMP/SQLEXEC is created
prior to processing. This view is automatically deleted when the command completes.

TABLE (Execute To A File) Command 2-195

VIEW Parameter

Specifies the view to be used during this execution of the table overrides the view used when the
table was designed.

*TBL: The view (or SQL statement) used during the last table editing (DSNTABLE)
session will be used to run the table.

OUTFILE Parameter

Specifies the name of the database file to which the output is directed. If the outfile does not
exist when the command is run, it will be created automatically. If the file is created by the com-
mand, the view’s object text, will be used as file object text. If an SQL statement is supplied to
the command, the value of the TEXT Parameter will determine the new file’s text.

A “pattern” outfile named SQLEXEC in the Sequel library supplies information regarding the
size, allocation Parameters, and maximum number of members allowed. You can alter the char-
acteristics of Sequel created output files by sing the Change Physical File (CHGPF) command
on the SEQUEL/SQLEXEC file.

Either an output file or a PC document must be specified by the command. You cannot specify
that you want output place in both an output file and a PC document during a single use of the
EXECUTE command.

*CURLIB: The current library will be used to locate the file. If it is not found, the output
file will be created in the current library.

*LIBL: Using *LIBL as a library name causes your library list to be searched for the file
you indicate. If it is not found, the output file will be created in your QTEMP library.

OUTMBR Parameter

Specifies the name of the database file member to which the output of the view is directed. If a
new member is created, member text will be the text supplied with the view or specified on the
TEXT Parameter.

*FIRST: output is directed to the first member in the file. If this value is specified and
the member does not exist, Sequel creates a member with the same name as the file
specified in the OUTFILE Parameter.

member-name:output is directed to the named member in the file. If the member does not exist,
it will be added to the file.

MBROPT Parameter

If the output file exists before the command is issued, this keyword indicates if records in the file
will be cleared prior to executing the query or whether the view data will be appended to the
existing records instead.

2-196 Sequel 11 Programmer’s Guide - Command Reference

*REPLACE: existing records are cleared from the output member and replaced with records
from the query view.

*ADD: records currently in the member are retained and records from this view are
added to them.

NBRRCDS Parameter

Controls the number of records placed into the output file. It does not control the number of
records used in searching for output records, nor does it shorten any time necessary to build an
access path to process your request.

*ALL: the entire result will be placed in the outfile member.

*NONE: the file will be created (and optionally cleared) but no query records will be put
in the member. This option can be useful when creating a "format file" so that a HLL
program can be compiled in preparation for using OPNSQLF.

number: Specifies the maximum number of records to be placed in the output member.

RCDFMT Parameter

If a new file is created, Sequel will create a new format for your output file and give it the name
indicated by the RCDFMT Parameter.

VIEWFMT: the default record format name for Sequel created formats.

format-name: a valid name to identify the created format.

When creating Excel output, the worksheet will be named based on the value specified on the
RCDFMT Parameter.

COMMIT Parameter

Indicates whether and how the open data path will be placed under commitment control.

*NO: The open data path will not be placed under commitment control.

*YES: The open data path will be placed under commitment control.

*CHG: Every record read for update (for a file opened under commitment control) is
locked. If a record is updated, added, or deleted, that record remains locked until the
transaction is committed or rolled back. Records that are accessed for update but are
released without being updated are unlocked.

*CS: Every record accessed for files opened under commitment control is locked.
Records that are not updated or deleted are locked only until a different record is
accessed. Records that are updated, added, or deleted are locked until the transaction is
committed or rolled back.

*ALL: Every record accessed for files opened under commitment control is locked
until the transaction is committed or rolled back.

TABLE (Execute To A File) Command 2-197

KEYFLDCNT Parameter

Use this Parameter to specify how many of the dimension fields in the table should be used in
creating an access path description for the output file. The KEYFLDCNT Parameter is only used
when a new file is created. It has no significance if records are placed in an existing file.

*ALL: all dimension fields in the will be used in creating the key description.

*NONE: the new file will not have an associated access path.

number: the number of dimension fields (starting with the leftmost) that will be used to
form the key description for the output file.

ALWNULL Parameter

Use this Parameter to specify whether the newly created file should allow null capable fields
within the record format definition. Refer to the Sequel SQL Reference Guide for more informa-
tion regarding the ALWNULL field attribute and null capability.

*NO: No null capable fields will be created in the record format. Null capable fields
returned by the view will be overridden so that they are not null capable.

*YES: The format is allowed to contain null capable fields. The ALWNULL attribute
for fields in the created format will be determined by each field’s definition within the
view.

TOFLR Parameter

Specifies the name of the folder that contains the PC document to which records are being cop-
ied. A fully qualified path name must be used and all folders in the path must exist.

TODOC Parameter

Specifies the name of the PC document in the folder that receives the records. If the document
name is not valid, an error message is issued, and the command will not complete successfully.

Indicate a valid PC document name. It may contain up to 8 characters. An extension, separated
from the file name with a period, can be up to 3 characters.

PCFMT Parameter

Specifies the format of the data placed into the PC document.

*SDF: This format is similar to the format produced by IBM’s Client Access file trans-
fer with output file type ASCII text. Each record is terminated by a carriage return and
linefeed. Field values are placed in the output record without separators. Numeric values
are unedited except that leading zeros are replaced with blanks and a leading negative
sign is added where appropriate. Decimal values have a decimal point inserted. Columns
edited with EDTCDE(X) are completely unedited – leading zeros are not suppressed,
and no sign or decimal separator is inserted.

2-198 Sequel 11 Programmer’s Guide - Command Reference

dBASE: The results from the view will be placed into the PC document in dBASE III
format. Use this form when you want to import the data into a spreadsheet or a PC data-
base program.

*HTML: Records are written to the indicated file in HTML (hypertext markup language)
format.

*PDF: View results will be placed into the PC document in Adobe Portable Document
Format.

*RTF: View results will be placed into the PC document in Rich Text Format. Font and
margin specifications will be drawn from the user default values accessible through the
ESNDUSR command.

*TXT: This format is the same as *SDF described above.

*WEBSPHERE:The selected DB2 data will be converted into attribute-formatted XML that is
compatible with WebSphere Commerce Suite applications. When the designated output
file is created, it can be imported into WebSphere with the mass Import Utility.

*WKS: The results from the view will be placed into a Lotus worksheet file. Use this
form when you want to import the data into a spreadsheet program that accepts Lotus
worksheet files. Maximum file size is limited to 65535 records.

*XL5: View results will be placed into the PC document in Microsoft Excel 5.0/95
workbook format. Maximum file size is limited to 65535 records.

*XLS, XL8: View results will be placed into the PC document in Microsoft Excel 97
(BIFF8) workbook format. Multiple worksheets will be created if more than 65535 rows
are returned by the view. Maximum file size generated is limited to either 2GB of total
data, or the Microsoft imposed limit of 65534 records per sheet—whichever is reached
first.

*XLSX: View results will be placed into the PC document in Microsoft Excel 2007 for-
mat. Maximum file size generated is limited to either 4GB of total data, or the Microsoft
imposed limit of 16,384 columns by 1,048,576 rows per sheet—whichever is reached
first. Use this format if you want more than 65,535 records in the same sheet. Otherwise,
use *XLS

*XMLXLS: View results will be placed into the PC document in 'Excel-formatted' XML for-
mat (an XML file is created).

*XML: View results will be placed into the PC document in XML database format and
appear in content form for the XML element. The data is formatted using the XML 1.0
standard.

*XML1: View results will be placed into the PC document in XML database format and
appear in attribute form for the XML element. The data is formatted using the XML 1.0
standard.

*PCFILE: The filename extension on the STMF or TODOC value will be used to infer the
PC format. (i.e. .xls->*XLS, .htm->*HTML) An extension of .txt or .csv will be trans-
lated to *DELIMITED format.

Note: Additional formats can be defined using the WRKPCFMT command. Some "standard"
formats are listed below, although their definitions may differ if they have been changed
with WRKPCFMT. All available formats can be listed by placing a question mark (?)
into the format field and pressing the Enter key.

TABLE (Execute To A File) Command 2-199

*DELIMITED:The results from the view will be placed into the PC document in a comma
delimited fashion. Fields will be separated with commas, quotation marks will surround
alphanumeric fields, records will be terminated with a carriage return and linefeed.
Numeric fields are edited to include a minus sign and decimal point where appropriate.
No “header” record is provided. This form is especially useful for more general word
processing, spreadsheet, or database applications.

*MERGE: Like the *DELIMITED form, fields are placed into the document in text form
and separated by commas. Quotation marks will surround alphanumeric fields, records
will be terminated with a carriage return and linefeed. Numeric fields are edited accord-
ing to the edit code or edit word supplied by the view. If one is not supplied, a minus
sign and decimal point are included where appropriate. A “header” record listing the
name of each field precedes the data. This form is especially useful when you want to
use a word processor to merge the data with another document.

*TDELIM: The results from the view will be placed into the PC document in a tab delimited
fashion. Fields will be separated with tabs, quotation marks will surround alphanumeric
fields, records will be terminated with a carriage return and linefeed.

TOSTMF Parameter

Specifies the name of a stream file in the integrated file system (IFS) to receive the PC formatted
results. The TOSTMF Parameter allows you to enter up to 2000 characters for the full IFS path
and stream file name. IFS paths and files can be viewed by the IBM command WRKLNK on the
AS/400 or from the PC directory viewer such as Windows Explorer.

IFS Path Rules
Path names are entered left-to-right, beginning with the highest level directory and ending with
the name of the object to be created. Each directory specified in the path must exist. The name of
each component in the path is separated by a slash (/) or back slash (\); for example: ‘Dir1/Dir2/
Name.ext’ or ‘Dir1\Dir2\Name.ext’

A '/' or '\' at the beginning of a path name means that the path begins at the topmost directory, the
"root" (/) directory. For example, ‘/Dir1/Dir2/Name.ext’ where /Dir1 is a subdirectory of the
"root".

If the path name does not begin with '/' or '\', the path is assumed to begin at the current directory
of the user entering the command. The current directory can be determined using the DSP-
CURDIR command. For example, ‘Dir1/Name.ext’ where Dir1 is a subdirectory of the users
current directory.

If the path begins with a '~' followed by '/' or '\', the path is assumed to begin at the home direc-
tory defined in the user profile of the user entering the command. For example, ‘~/Dir1/
Name.ext’ where Dir1 is a subdirectory of the users home directory.

If the path begins with a '~' followed by a user name and then followed by '/' or '\', the path is
assumed to begin at the home directory of the user identified by the user name. For example:
‘~UserName/Dir1/Name.ext’, where Dir1 is a subdirectory of the home directory for UserName.

2-200 Sequel 11 Programmer’s Guide - Command Reference

REPLACE Parameter

Specifies whether the new information will replace an existing PC document.

*NO: If a PC document with this name already exists in the folder specified by the
TOFLR Parameter, the operation is not performed and the existing PC document is left
unchanged.

*YES: If a PC document with this name already exists in the folder specified by the
TOFLR Parameter, it is replaced by the records retrieved from the view.

TOSERVER Parameter

Specifies the target database that the results of the request will be exported to. If this Parameter
is specified, then you must also specify the TOTABLE Parameter. The server-name must corre-
spond to a valid server definition in the SEQUELHost file.

TOTABLE Parameter

Specifies the name of the table that the results of the request will be exported to. This value is
required if the TOSERVER Parameter is specified.

ENTITY Parameter

The ENTITY Parameter specifies the entity name being created in an XML formatted document.
The Entity name can also be thought of as a file level, or perhaps record set description in this
context. Specify one of the following options:

*VIEW: - The entity name will be the view name run by the command.

*NONE: - No entity will be created. The element(s) created by the view will be placed
into the XML result without an entity wrapper.

Name: - Enter a specific entity name.

ENTITYATYR Parameter

Specifies the attributes to include for the entity being created in an XML formatted document.

*NONE: No attributes will be included with the entity tag.

RECIPIENT Parameter

Specifies the SMTP address to receive an e-mail message. The results will be included as an
attachment to the message.

If you are sending EXECUTE results to an e-mail recipient, you do not need to specify a file
name. If you do not want to retain the results after the e-mail message is completed, simply omit
the file specification. Do not specify the TOFLR/TODOC or the TOSTMT Parameter. If you
choose to retain the results in a local file, you may specify a value for either the TOFLR/TODOC

TABLE (Execute To A File) Command 2-201

or the TOSTMT Parameter. You are still required to specify the format (*HTML, *CSV, *XLS,
*WKS, *DBF, etc.) of the results.

TEXT Parameter

The TEXT keyword may be specified if an SQL statement is specified. It should not be used if a
view name is given. If the file named by the OUTFILE Parameter does not exist, the text, either
from the command or the view, will be attached to the created file.

EMLMSG Parameter

If the recipient Parameter is used to e-mail results, a message can be sent with the attachments.
Up to 1000 characters of message can be sent. Text is continuous without paragraph breaks.

*NONE: No message text is sent with the attachments. The default text is built from the
command.

Text: The text is automatically enclosed in quotes and sent with the attachment.

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

Additional considerations

Records will not be checked for valid decimal data as they are placed into the output file. Invalid
decimal data may cause selection or expression evaluation errors unless IGNDECERR(*YES) is
specified on the command or the view. If specified, decimal data errors encountered while the
view is processed will be ignored and processing will continue. Each invalid decimal digit will
be replaced with a zero digit, an invalid sign will be coded as a positive sign.

If the output file exists prior to executing the request, it is checked for compatibility with the
view. The compatibility check (also known as a record format level id check) compares the data
presented by the view and the structure of the output file. The record format name provided by
the query and the following elements for each field in the query request must match the defini-
tions in the file:

Field name
Specific data type (Zoned, Packed, etc.)
Length and precision
Null capability

2-202 Sequel 11 Programmer’s Guide - Command Reference

Preferred date format

A field’s column heading, edit word or edit code, and coded character set identifier (CCSID) do
not participate in the compatibility test.

If the file is incompatible with the query, Sequel issues an escape message (QRY7000) inform-
ing you of this fact. You must decide whether to delete the file and allow the command to re-cre-
ate it, or to change the name of the OUTFILE and use a different file for the output from this
query.

Output data attributes

Unless otherwise modified by the NAME, LEN, COLHDG, EDTCDE, EDTWRD, and DFT
keywords of the SELECT clause, all attributes from the database fields referenced by the
SELECT clause will be used to define the output format.

Unless specifically typed using the ZONED, INTEGER, or FLOAT functions, all fixed point
numeric fields created by query expressions are output as packed decimal data.

If the SELECT clause does not specify the length of literals via the LEN keyword, a default
length is used. Character literals are created as fixed length fields having the length of the literal.
Numeric integer literals are created as 4 byte binary values. The length of expression results are
based on the operands and operators involved in expression.

Date/time considerations
All date and time fields in the output record receive the preferred format specified by the
DTSTYLE Parameter. If *FIELD is specified, the underlying field format is used for all data-
base fields and the current job’s format is used for columns defined by literal and external val-
ues.

Default values supplied via the DFT keyword in the SELECT clause must conform to the pre-
ferred form of its associated column.

Null value considerations
The null capability for output fields is derived from the database fields on which they are based.
An expression involving one or more fields with the “allow null” attribute causes the result to
have null capability unless ALWNULL(*NO) is specified on the request. Columns that are cre-
ated by literal values will allow nulls only if the SELECT clause also specifies DFT(NULL) for
the column and ALWNULL(*YES) is specified.

CCSID considerations
The output file will preserve the coded character set identifier (CCSID) of the fields chosen in
the SELECT clause. All literal values created by query expressions receive the executing job’s
CCSID. The CCSID value of expression results depends on the CCSID of the participating
fields. Refer to the appropriate IBM manuals for more information regarding the Distributed
Relational Database and Character Dataset Representation architectures.

Error conditions

TABLE (Execute To A File) Command 2-203

Data mapping errors (CPF5035) can occur whenever a value is unable to fit into the output field.
Records that cause data mapping errors will not be inserted into the output file. Low level mes-
sages in the joblog of the executing job will clearly indicate the field causing the problem and
the record containing the invalid value.

Data mapping errors will also occur if a valid date value with a year less than 1940 or greater
than 2039 is placed into a field with a preferred format of MDY, YMD, DMY, or JUL.

As many records as possible from the input set will be placed into the output file. A completion
message will be issued indicating how many records were inserted by the request.

Examples

TABLE TABLE(ORDERAMTT) OUTFILE(QTEMP/ONORD)

The library list is searched for a tabling view named ORDERAMTT. It is run and the output is
directed to the ONORD file in the QTEMP library. If QTEMP/ONORD does not exist, it is cre-
ated. Any existing records are replaced by the records from the tabulation.

TABLE TABLE(CUSTBL01) SQL('SELECT * FROM custmast WHERE cstte="IL"')
 OUTFILE(CUSTTBL) OUTMBR(SUBSET) MBROPT(*ADD)

Performs the tabulation of CUSTBL01 using the given SQL statement rather than the original
view. Once the tabulation is complete, records will be placed into the SUBSET member of the
CUSTTBL file. If the CUSTTBL file can not be found on the job’s library list, it is created in the
job’s current library. If member SUBSET does not exist, it is created as well.

TABLE TABLE(CUSTBL02)
 SQL('SELECT cusno,cname,amtdu FROM custmast
 WHERE amtdu>0')
 TOFLR(myflr) TODOC(custdue.dbf)
 REPLACE(*YES) PCFMT(*dbase)

Customers with a positive amount due value are tabled according to the definition in CUST-
BL02 and placed into the myflr/custdue.dbf document in dBASE III format. The file can then be
accessed from a PC using shared folder support.

2-204 Sequel 11 Programmer’s Guide - Command Reference

UPDATE (Update Records In A File) Command

The UPDATE command lets you change records in a file. An SQL query statement or a pre-cre-
ated Sequel view supplies the records to be changed and the command supplies the new values
to be placed into these records.

Either an SQL statement or a view name must be specified for the command. If an SQL state-
ment is entered, a temporary view named QTEMP/SQLEXEC is created from the statement
prior to processing. This view is automatically deleted when the command completes.

With the exception listed below, Parameters for the UPDATE command are identical to those
required by the Create View (CRTVIEW) command. Refer to the description of CRTVIEW
starting on page 2-37 for a complete explanation of each Parameter.

For an explanation of the SERVER and SYNTAX parameters, refer to the DISPLAY command
on page 2-63.

Any Parameter values you supply will override the values specified on the CRTVIEW definition
of the view or SQL statement. A Parameter default of *SAME indicates that values supplied
when the view was created will apply during this execution. If an SQL statement is supplied on
the command, values for Parameters you do not specify will default to those supplied with the
CRTVIEW command.

Refer to Part 5 of this manual (page 5-1) for additional information about Sequel’s data modifi-
cation capabilities.

SET Parameter

The SET Parameter specifies both the column(s) to be updated and the new value(s) to be used.
Values can be field names, constants, or expressions involving fields and constants. Sequel will
convert numeric and character values to their target format. Numeric expressions are evaluated
to a decimal precision of (31,9) and placed (unrounded) into the result field.

Constant values should be represented as they would normally occur within a Sequel statement.
Surround character constants with double quotation marks ("). Decimal values require a leading
digit. Each value specification containing a character constant or expression should also be sur-
rounded by a set of single quotation marks.

The UPDATE command is capable of evaluating expressions involving numeric, alphabetic, and
date values. The SET Parameter supports all of the operations available in Sequel’s SQL state-
ments.

COMMIT Parameter

This parameter is ignored if there is no active commitment definition for the job (see IBM docu-
mentation for STRCMTCTL). When commitment control is active, this parameter indicates
whether and how the open data path will be placed under commitment control. See the discus-
sion on commitment control (page 5-2) for more information.

UPDATE (Update Records In A File) Command 2-205

*NO: The open data path will not be placed under commitment control. Even with
commitment control active, the query will run outside of commitment control.

*YES: The open data path will be placed under commitment control using the default
lock level (LCKLVL) specified with STRCMTCTL.

*CHG: Every record read for update (for a file opened under commitment control) is
locked. If a record is updated, added, or deleted, that record remains locked until the
transaction is committed or rolled back. Records that are accessed for update but are
released without being updated are unlocked.

*CS: Every record accessed for files opened under commitment control is locked.
Records that are not updated or deleted are locked only until a different record is
accessed. Records that are updated, added, or deleted are locked until the transaction is
committed or rolled back.

*ALL: Every record accessed for files opened under commitment control is locked
until the transaction is committed or rolled back.

JFANOUT Parameter

Indicates whether multiple join target records will be used, or only the first one. This Parameter
is meaningful only when the join defines a one-to-many relationship between a primary file and
a secondary file.

*ALL: All join target records from each secondary file will be used.

*FIRST: Only the first join target record from each secondary file will be used. Any additional
secondary records will be ignored.

SETVAR Parameter

Specify the run–time values to be used for the view’s variable definitions. Elements in the
SETVAR list identify a variable name to be set and, optionally, its value. The value portion may
be up to 1085 characters long. If the value is omitted, the variable will receive the default value
indicated by its definition.

If any of the view’s variables are omitted from the SETVAR list, the run–time prompt display
will appear before the request is run. The user must supply the missing values before the view
will run correctly. The user will be unable to change values that were supplied on the command.
If the command is submitted for batch execution and all variables have not been supplied, the
request will end abnormally.

Remote Database Considerations

For *ISERIES connections using *LOCAL or *LOCALSYS, the UPDATE target file must be
journaled. For more information on creating and using journals, see the Commitment Control
section starting on page 5-2.

For non-System i remote connections (such as SQL Server, Oracle, and MySQL), syntax
*SEQUEL is not supported. The VIEW or SQL must be written in the syntax of the target data-
base.

2-206 Sequel 11 Programmer’s Guide - Command Reference

You cannot UPDATE across systems—meaning you cannot UPDATE data on system A with
data from system B.

The SQL or VIEW used by the UPDATE command cannot contain joined files. You can only
specify one file in the FROM clause when a SERVER value other than *SEQUEL is specified.

For the SET parameter of the UPDATE command (page 2-204), all character strings must be
surrounded by triple single-quotes like so: SET((FLD1 '''new value'''))

Improve Performance on the System i
You can improve performance on the local System i, if you override existing Sequel views to run
as *LOCALSYS. For example:

UPDATE SET((CUSNO 100501)) SQL('from custlist where cusno=100500')

Runs using the older Classic Query Engine (CQE), but:

UPDATE SET((CUSNO 100501)) SQL('from custlist where cusno=100500')
SERVER(*LOCALSYS) SYNTAX(*SEQUEL)

runs using the new SQL Query Engine (SQE) of the query processor. For views that update large
numbers of records the performance difference can be significant.

Examples

UPDATE SET((cusno 100100)) SQL('FROM ordhead WHERE cusno=100')

Changes each record in the ORDHEAD file having a current customer number value of 100. The
new customer number value will be 100100.

UPDATE SET((salary 'salary*1.1')) SQL('FROM paymast')

Makes a 10% increase in the salary field for all records in PAYMAST.

UPDATE SET((cphon 'cphon MOD 10000000+7080000000'))
 SQL('FROM custmast
 WHERE cphon BETWEEN 3120000000 AND 3129999999
 AND SUBSTR(czipc,1,3)<>"606" ')

Changes the telephone number for customers in the Chicago area that have been reassigned from
area 312 to area 708. The modulus operator extracts the last 7 digits from the phone number and
is appended onto the new area code using multiplication (to shift the area code to the left) and
addition.

UPDATE (Update Records In A File) Command 2-207

UPDATE SET((flag '"B"') (quanb quans)
 (quano 'quano-quans') (quans 0))
 SQL('FROM ordline WHERE ordno=123421')

Changes all records in the ORDLINE file having order number 123421. Four fields are modi-
fied. Alphanumeric field FLAG is set to the constant “B” for each record in the set. Field
QUANB is assigned the value in the QUANS field. QUANO is decremented by subtracting
QUANS from it. QUANS is assigned a zero value.

UPDATE SET((CUSNO 100201)) SQL('from cusno_work where cusno=100200')
SERVER(ASCSERVER2SQL)

Updates the value of CUSNO from 100200 to 100201 on remote server ASCSERVER2SQL.

For additional examples please refer to the Changing Records section in Chapter 5 of the Pro-
grammer’s Guide.

2-208 Sequel 11 Programmer’s Guide - Command Reference

UPDRMTCMD (Update Remote Command) Command

The Update Remote Command (UPDRMTCMD) is used to analyze and/or convert existing
Sequel Scripts to replace instances of RUNRMTCMD with VPTRMTCMD (page 212).

To qualify, the RUNRMTCMD statement must be an active script command, containing
\viewpnt or \viewpoint. The RUNRMTCMD can be embedded inside another command such as
RUNCMD.

Comments that contain RUNRMTCMD will not be converted.

The RUNRMTCMD contains parameters that are not converted and will be removed, such as:
• RMTLOCNAME
• RMTUSER
• RMTPWD
• MODE
• CCSID

UPDRMTCMD Parameters

Search Library (SRCHLIB)

Specifies the name of the library that contains scripts to be analyzed or converted.

*LIBL: Uses the library list to find the objects specified by the name Parameter.

*ALL: All libraries on the system will be searched for objects that meet the name part
of the search criteria.

*ALLUSR: All user libraries will be searched for the objects that meet the name part of the
search criteria.

*CURLIB: Your job's current library will be searched for the objects that meet the name
part of the search criteria.

*USRLIBL: The user portion of your job's library list will be searched for the objects that
meet the name part of the search criteria.

Search Location Name (SCHLOCNAME)

Searches the RMTLOCNAME of existing scripts and only reports or converts those
RUNRMTCMDs that finds a match.

*ANY The content of the RMTLOCNAME is not used to determine if the statement is
to be reported or converted.

Search-String If the search finds an EXACT match followed by either a blank, single quote or
double quote, it is included. If the match is followed by any other character, it is not
included.

UPDRMTCMD (Update Remote Command) Command 2-209

Example:
(where Search Location Name = HS040)

RUNRMTCMD RMTLOCNAME('HS040') will not match

RUNRMTCMD RMTLOCNAME(HS040 *IP) will match

Remote Data Queue Name (DTAQNAME)

This is the name of the listener Data Queue.

VPTRMTDQ The default data queue VPTRMTDQ is created in the same library as Sequel,
during the install.

DtaQ Name The name of an alternate Data Queue to be used instead of the default.

Analysis Type (ANALYSIS)

Specifies whether to only analyze existing scripts and produce a report, or whether to report and
Convert the matching scripts.

*REPORT Only produce the conversion report. Do not convert.

*CONVERT Produce the conversion report and convert the matching scripts.

Example:
This command to run a Client Report:
RUNRMTCMD CMD('"\program files\sequel viewpoint\viewpnt.exe"
/V:server/lib/cro_report') RMTLOCNAME(VPServer *IP) RMTUSER(*NONE)
RMTPWD(*NONE) MODE(*NETATR) CCSID(*CALC) WAITTIME(*NOMAX)

Converts to:
VPTRMTCMD CMD('"\program files\sequel viewpoint\viewpnt.exe"
/V:server/lib/cro_report') DTAQ(VPTRMTDQ) WAITTIME(*NOMAX)

2-210 Sequel 11 Programmer’s Guide - Command Reference

VFYREPO (Verify Repository) Command

The Verify Repository (VFYREPO) command is installed with the host software, and is
designed to be used by an Administrator to verify the integrity of the repository by performing
cross-checks between the repository files and a list of specified libraries. If any orphaned files or
user spaces are found, reports are produced identifying the orphaned objects.

After review, if it is determined that the orphaned objects should be deleted, the command can be
rerun, specifying to delete either orphaned repository files, orphaned user spaces or both.

Rebuild Repository File List (RBDLST) Parameter

This option allows for the repository file list to be rebuilt when the command is run. On first use
of the command, leave this value set to *YES to completely rebuild a list of files in all repository
folders. On subsequent uses of the command in the same session/timeframe, you can override
this to *NO. This will save some time by not rebuilding the list.

Note: Only recognized Viewpoint file types are included in this list. Other types such as PDF,
XLSX or TXT files are not included or processed by this command.

*YES Select to rebuild the repository file list.

*NO Select to skip the rebuild process (this saves time).

Delete Orphaned IFS Files (DLTORPFIL)

This option allows you to clean up the orphaned objects in the Repository. It is recommended
that this parameter is set to *NO initially, and possibly rerun with a value of *YES only after the
report has been reviewed and you have confirmed that the orphaned files should be deleted.

*NO Leave any orphaned objects in the Repository. Review the generated reports
before using *YES to delete the orphaned objects.

*YES Specify to delete any file in the Repository that does not have a matching user
space.

Delete Orphaned User Spaces (DLTORPUSPC)

 - This option allows you to clean up orphaned objects (user spaces) in the specified library on
the host. It is recommended that this parameter is set to *NO initially, and possibly rerun with a
value of *YES only after the report has been reviewed and you have confirmed that the orphaned
user spaces should be deleted.

*NO Leave any orphaned objects in the specified library. Review the generated
reports before using *YES to delete the orphaned objects.

*YES Specify to delete any user spaces in the libraries that are processed by the com-
mand (see Libraries to Cross-Reference Parameter) that do not have a matching file in
the repository.

VFYREPO (Verify Repository) Command 2-211

Libraries to Cross Validate (VLDLIB)

 - Specify the library or list of libraries (up to 50) to scan for user space objects.

*USRLIBL Search the user libraries in your library list.

*NONE Do not perform any cross-reference checks at all.

lib name Enter a single library to scan, or a plus (+) sign to enter multiple libraries (up to
50).

2-212 Sequel 11 Programmer’s Guide - Command Reference

VPTRMTCMD (Viewpoint Remote Command) Command

The Viewpoint Remote Command (VPTRMTCMD) is an alternative to the RUNRMTCMD
used in Viewpoint scripts to direct Client Report and Client Table output and used from Sequel
Web Interface. RUNRMTCMD is no longer available for use with some versions of Client
Access, such as Access Client Solutions (ACS) as used by Windows 10.

VPTRMTCMD places command instructions on a default Data Queue—VPTRMTDQQ—
located in the same Sequel library the command is in.

A listener process configured on a Windows server PC monitors the data queue for new com-
mand instructions from VPTRMTCMD and runs the command in Viewpoint. Messages are sent
back to the VPTRMTCMD informing of the Viewpoint status.

The VPTRMTCMD ends when:
• The command completes normally
• The command ends in error
• The command times out according to the listener settings

Note: Another command—UPDRMTCMD (Update Remote Command)—is available to
analyze and convert existing scripts that currently use RUNRMTCMD to use VPTRMTCMD
instead. (page 208)

Command (CMD)
Specifies a character string of up to 1000 characters that is the command to be executed. The
value should be enclosed in single quotes.

This parameter must contain the call to \viewpnt or \viewpoint, to be valid.

Data Queue Name (DATAQ)
This is the name of the listener Data Queue.

VPTRMTDQ The default data queue VPTRMTDQ is created in the same library as Sequel,
during the install.

DtaQ Name The name of an alternate Data Queue to be used instead of the default.

Wait time (in seconds) (WAITTIME)
Specifies the maximum time in seconds, to wait for a successful return from Viewpoint.

*NOMAX The system waits forever.
*NOWAIT The system returns immediately.
2-3600 Specify the number of seconds to wait.

Warning: Use *NOWAIT with caution in a *PGM or a SEQUEL Script that uses a repetitive
process (a loop) to send many requests to the Viewpoint server in a short time-frame. This can
cause the Viewpoint server PC to hit resource limits when attempting to process many simulta-
neous requests, resulting in lost or corrupted output. Specify a wait time of (e.g.) 10 to 60 sec-
onds to spread out the requests over time.

WRKAUDDTA (Work With Audit Data) Command 2-213

WRKAUDDTA (Work With Audit Data) Command

This command lets you view and delete the information collected by the auditing software. You
can use it to see both summary and detail information about Sequel requests by user, object, or
job. You can also remove audit information.

Because the command presents displays to your workstation, it can only be run interactively. It
cannot be run in the batch environment. The command has no parameters.

2-214 Sequel 11 Programmer’s Guide - Command Reference

WRKAUDQRY (Work With Audit Data Query) Command

This command lets you work with your choice of audit information. It lets you use a Sequel view
to provide the data that appears on the audit inquiry display. You can use your own view (pro-
vided it conforms to the inquiry's expected record format) or the standard view that is shipped
with the auditing module. WRKAUDQRY uses the Open Sequel File (OPNSQLF) command
and the view you specify to create an open data path. The audit inquiry program uses the data
provided by the view to show you the audited requests you want to see.

The standard view, named AUDITQRY, is a variable view. The variables are combined with
common selection requests in the view's WHERE clause. By entering values for some of the
variables and omitting others you will usually be able to choose the audit requests you want to
see. When you run the WRKAUDQRY command and use the standard view, the runtime prompt
will appear. After completing the prompt, the audit inquiry will be run and you will be able to
work with the summarized and detailed audit information for the Sequel requests you include.

Because the command accesses the audit inquiry program that presents displays to your worksta-
tion, it can only be run interactively. It cannot be run in the batch environment.

VIEW Parameter

Specifies the view that will be used to supply data to the audit inquiry program. Indicate the
view name and library of the view you wish to use. The default value requests the AUDITQRY
view which includes runtime variables that test many common selection conditions. Qualify the
view name with a specific library name or one of the special values below:

*LIBL: Your job's library list will be searched for the view you specify.

*CURRENT: The library defined as your "current" library will be searched for the view.

WRKDCTOBJ (Work With Sequel Authority by Object 2-215

WRKDCTOBJ (Work With Sequel Authority by Object

This command invokes the interactive program that lets you work with the Authority Dictionary.
Using the displays presented to you, you will be able to create and change entries for libraries,
files and fields by indicating the user profile(s) that should be excluded from using them.

Because it presents displays at your workstation, the command can only be run interactively. It
has no Parameters.

After entering the command you will experience a slight delay while Sequel builds some work
files and acquires information about the objects named in the exclusion dictionary. You will be
presented with a display that looks like the one on the next page. It allows you to take an object
oriented approach to either exclusion or inclusion. Exclusion works by first identifying objects
that need to be excluded from user access, then selecting the users that must be excluded from
accessing them. Inclusion works by first identifying the objects that need to be included for user
access, then selecting the users that must in included to access those objects.

2-216 Sequel 11 Programmer’s Guide - Command Reference

WRKDCTUSR (Work With Sequel Authority by User) Command

This command invokes the interactive program that lets you work with the Authority Dictionary.
Using the displays presented to you, you will be able to create and change entries for the users
on your system and indicate the libraries, files and fields that they should be prevented from
using.

Because it presents displays at your workstation, the command can only be run interactively. It
has no Parameters.

After entering the command you will experience a slight delay while Sequel creates work files
and acquires the names of the user profiles on your system. You will be presented with a display
that looks like the one on the next page. It allows you to take an object oriented approach to
either exclusion or inclusion. Exclusion works by first identifying objects that need to be
excluded from user access, then selecting the users that must be excluded from accessing them.
Inclusion works by first identifying the objects that need to be included for user access, then
selecting the users that must in included to access those objects.

Refer to Part 3 of this manual for a complete description of the Sequel Authority Dictionary and
how to use this command to create and change its entries.

WRKPCFMT (Work With PC Formats) Command 2-217

WRKPCFMT (Work With PC Formats) Command

The Work With PC Formats (WRKPCFMT) command allows you create additional delimited
PC formats or modify existing formats that are used on the PCFMT Parameter of the EXECUTE
command. You can control the character that is used as the delimited character, record ending
character, string start and ending characters, whether to include a header record (like *MERGE),
and the type of editing to use with numbers.

The WRKPCFMT command does not have any Parameters. It is an interactive program that pro-
vides screens to create new formats. Four default formats are included. The screen looks like the
following:

The function keys and options listed in the table will work as indicated. The key definitions can-
not be changed.

Option Description
1=Select Chooses items in the list. The Format Definition screen will be displayed.
3=Copy Copy the item(s) using the Create Duplicate Object (CRTDUPOBJ) com-

mand.
4=Delete Delete the object(s).
7=Rename Rename the selected object(s) using the Rename Object (RNMOBJ) com-

mand.

Function Key Description
F3=Exit Exit the PC Format Selection Screen.
F6=Create Create a new format.

2-218 Sequel 11 Programmer’s Guide - Command Reference

Delimiter
*NONE: No delimiters will be used.

Delimiting characters:Enter up to 5 characters to use as a delimiter. Hexadecimal characters
can be entered as x'<hex representation>'.(e.g.x'0D0A' for a carriage return followed by
a line feed character).

String start
Determines if delimiters should be used at the beginning of the string.

*NONE: No delimiters are used at the beginning of a string.

String beginning characters:Enter up to 5 characters to use to determine the beginning of a
string. Hexadecimal characters can be entered as x'<hex representation>'.(e.g. x'0D0A'
for a carriage return followed by a line feed character).

String end
Determines if delimiters should be used at the end of the string.

*NONE: No delimiters are used at the end of a string.

String beginning characters:Enter up to 5 characters to use to determine the end of a string.
Hexadecimal characters can be entered as x'<hex representation>'.(e.g. x'0D0A' for a
carriage return followed by a line feed character).

WRKPCFMT (Work With PC Formats) Command 2-219

Record end
Specifies the end of record delimiter.

*NONE: No delimiters are used at the end of a record.

String beginning characters:Enter up to 5 characters to use to determine the end of a record.
Hexadecimal characters can be entered as x'<hex representation>'.(e.g. x'0D0A' for a
carriage return followed by a line feed character).

Heading record
Specifies whether a heading record will be included in the file.

*NONE: A heading record will not be included in the file.

*NAME: A header record containing field names will be emitted ahead of the data.

*HEADING: A header record containing column headings will be emitted before the data.

Numeric edit
Determines how numeric fields should be edited.

*NUMBER: Numeric fields will be left unquoted and will be edited with the job's decimal
format character and an optional leading minus sign. If the decimal separator matches
the delimiter character, the value will be quoted

*DIGITS: No sign and no decimal separator will be used on numeric fields. Values appear
unquoted as a digit sequence, including leading zeros.

*EDIT: Apply AS/400 editing as defined in your file and numeric values will be sur-
rounded with quotation characters.

2-220 Sequel 11 Programmer’s Guide - Command Reference

WRKREPORT (Work With Reports) Command

This command makes it easy to create, change, run and display the reports on your system.

It provides a simple interface that is similar to the OS/400 Work With Queries (WRKQRY) com-
mand. Beginning or inexperienced users will find it useful; more experienced users will prefer to
use the Work With Sequel Objects (WRKSEQUEL) command.

The WRKREPORT command can be run from the “Work With Sequel Objects” display by
selecting 12=Work with for any report in the list. Refer to the WRKSEQUEL command for addi-
tional information.

The syntax structure for the command is shown below.

Since it uses the workstation display, the command can only be run from an interactive job. Once
the command has been entered, the menu like display will appear.

OBJ Parameter

The command keyword indicates which items you wish to work with.

Object Name:

*ALL: All reports in the selected library are chosen.

Generic*: Reports meeting the generic criteria are chosen. Enter the beginning portion of
the object name and append an asterisk.

Object-name: Specific report name

Library Name:

*PRV: The previous “work with” library will be used again. To view the name of the
library that will be used, prompt the command without specifying a library name. The
*PRV library value will appear on the prompt display.

*CURLIB: The job’s current library (*CURLIB) will be searched for reports.

*LIBL: Libraries on the library list containing the type of objects indicated by the OBJ-
TYPE Parameter are shown.

*ALL: All libraries on the system containing reports are shown.

*ALLUSR: All user libraries (those not beginning with the letter “Q”) on the system that
contain views or reports are shown.

*USRLIBL: Libraries on the user portion of your library list containing reports are shown.

Generic*: Libraries meeting the generic criteria that contain reports are shown. Enter the
beginning portion of the library name and append an asterisk.

Object-name: Specific library name

WRKSEQUEL (Work With Sequel Objects) Command 2-221

WRKSEQUEL (Work With Sequel Objects) Command

This command make it easy to work with the Sequel views and reports on your system. It pro-
vides an exceptional environment that gives you the flexibility of creating, changing, and run-
ning views and reports.

Sequel also provides Work With Views (WRKVIEW) and Work With Reports (WRKREPORT)
commands. These commands present a simple menu interface with limited options but also
allow a user to acquire the WRKSEQUEL list display by prompting the view (or report) name
from the menu.

The command syntax structure for Work With Sequel Objects command is shown below.

Since it uses the workstation display, the command can only be run from an interactive job.

OBJ Parameter

The command keyword indicates which items you wish to work with.

Object Name:

*ALL: All view/reports in the selected library are chosen.

Generic*: Views meeting the generic criteria are chosen. Enter the beginning portion of
the object name and append an asterisk.

Object-name: Specific view or report name

Library Name:

*PRV: The previous “work with” library will be used again. To view the name of the
library that will be used, prompt the command without specifying a library name. The
*PRV library value will appear on the prompt display.

*CURLIB: The job’s current library (*CURLIB) will be searched for views or reports.

*LIBL: Libraries on the library list containing the type of objects indicated by the OBJ-
TYPE Parameter are shown.

*ALL: All libraries on the system containing views or reports are shown.

*ALLUSR: All user libraries (those not beginning with the letter “Q”) on the system that
contain views or reports are shown.

*USRLIBL: Libraries on the user portion of your library list containing views or reports are
shown.

Generic*: Libraries meeting the generic criteria that contain views or reports are shown.
Enter the beginning portion of the library name and append an asterisk.

Object-name: Specific library name

2-222 Sequel 11 Programmer’s Guide - Command Reference

If the Parameter value indicates a specific library name, then Sequel will search the library and
present a list of the views or reports meeting the name criteria and allow you to perform
a wide range of functions (create, delete, change, execute, etc.) on them.

If the Parameter value does not indicate a specific library name but instead uses a special value
or generic name, a selection display will appear which presents the list of libraries meet-
ing your search criteria that contain views/reports and allow you to choose a specific
library.

OBJTYPE Parameter

Indicates which Sequel objects you want to work with. Select one of the following values:

*ALL: All views and reports meeting the naming criteria of the OBJ Parameter will be
selected.

*VIEW: Only Sequel views will appear in the list. Both standard and runtime views will
be included.

*RPT: Only Sequel reports will appear in the list.

*STDVIEW: Only non-prompting views be included in the list.

*PMTVIEW: Only runtime prompting views be included in the list.

Examples

WRKSEQUEL

The command default of OBJ(*PRV/*ALL) OBJTYPE(*ALL) is assumed and all views and
reports in the library you worked with in your last Sequel session will be presented on the selec-
tion display.

WRKSEQUEL OBJ(SEQUELEX/GHB*)

The selection display will show all views and reports in the SEQUELEX library beginning with
the letters “GHB”.

WRKSEQUEL OBJ(*ALLUSR/*ALL) OBJTYP(*RPT)

All user libraries on the system will be searched for Sequel reports. All the reports will be pre-
sented on the selection display.

WRKSCRIPT (Work With Scripts) Command 2-223

WRKSCRIPT (Work With Scripts) Command

This command makes it easy to create, change, run and display the scripts on your system.

It provides a simple interface that is similar to the OS/400 Work With Queries (WRKQRY) com-
mand. Beginning or inexperienced users will find it useful; more experienced users will prefer to
use the Work With Sequel Objects (WRKSEQUEL) command.

The WRKSCRIPT command can be run from the “Work With Sequel Objects” display by
selecting 12=Work with for any script in the list. Refer to the WRKSEQUEL command for addi-
tional information.

Since it uses the workstation display, the command can only be run from an interactive job. Once
the command has been entered, the menu like display will appear.

OBJ Parameter

The command keyword indicates which items you wish to work with. The value entered for the
OBJ Parameter will appear on the initial “Work With” menu.

Object Name:

*ALL: All scripts in the selected library are chosen.

Generic*: Scripts meeting the generic criteria are chosen. Enter the beginning portion of
the object name and append an asterisk.

Object-name: Specific script name

Library Name:

*PRV: The previous “work with” library will be used again. To view the name of the
library that will be used, prompt the command without specifying a library name. The
*PRV library value will appear on the prompt display.

*CURLIB: The job’s current library (*CURLIB) will be searched for views.

*LIBL: Libraries on the library list containing the type of objects indicated by the OBJ-
TYPE Parameter are shown.

*ALL: All libraries on the system containing views are shown.

*ALLUSR: All user libraries (those not beginning with the letter “Q”) on the system that
contain views are shown.

*USRLIBL: Libraries on the user portion of your library list containing views are shown.

Object-name: Specific library name

2-224 Sequel 11 Programmer’s Guide - Command Reference

WRKVIEW (Work With Views) Command

This command makes it easy to create, change, run and display the views on your system.

It provides a simple interface that is similar to the OS/400 Work With Queries (WRKQRY) com-
mand. Beginning or inexperienced users will find it useful; more experienced users will prefer to
use the Work With Sequel Objects (WRKSEQUEL) command.

The WRKVIEW command can be run from the “Work With Sequel Objects” display by select-
ing 12=Work with for any view in the list. Refer to the WRKSEQUEL command for additional
information.

The syntax structure for the command is shown below.

Since it uses the workstation display, the command can only be run from an interactive job. Once
the command has been entered, a menu like display will appear.

OBJ Parameter

The command keyword indicates which items you wish to work with. The value entered for the
OBJ Parameter will appear on the initial “Work With” menu.

Object Name:

*ALL: All views in the selected library are chosen.

Generic*: Views meeting the generic criteria are chosen. Enter the beginning portion of
the object name and append an asterisk.

Object-name: Specific view name

Library Name:

*PRV: The previous “work with” library will be used again. To view the name of the
library that will be used, prompt the command without specifying a library name. The
*PRV library value will appear on the prompt display.

*CURLIB: The job’s current library (*CURLIB) will be searched for views.

*LIBL: Libraries on the library list containing the type of objects indicated by the OBJ-
TYPE Parameter are shown.

*ALL: All libraries on the system containing views are shown.

*ALLUSR: All user libraries (those not beginning with the letter “Q”) on the system that
contain views are shown.

*USRLIBL: Libraries on the user portion of your library list containing views are shown.

Object-name: Specific library name

Sequel Security 3-1

Sequel Security

Sequel includes a mechanism that lets you supplement system object authority and restrict
access to database files and fields. Sequel Security is based on dictionary entries that can either
be defined as Exclusion or Inclusion (not both). It is a simple two step process: define the exclu-
sion database that limits users from libraries, files and fields, and set users' defaults to force them
to use the exclusion dictionary.

You will probably want to use this feature of Sequel if your environment provides *PUBLIC
authority to most files and libraries. If you want to restrict users from some of these files and
allow them to access others, this will help you.

You may also want to restrict certain fields within some files from user access. Under OS/400
version 4 release 2.0, you can use Client Access to do this at the system level. Prior to V4R2,
you can only use "program-defined" mechanisms like the Sequel exclusion dictionary to do this.
With the Sequel security system you can identify specific fields that are to be restricted. Users
can be allowed to access some fields within the file, while being denied access to others that you
have identified as restricted.

Exclusion dictionary

Sequel security uses either an exclusion dictionary that you define with a series of entries to indi-
cate which users should be restricted from specific libraries, files and fields in your database.
The exclusion dictionary is an additional filter that is applied after system object security has
limited the user to objects they are normally authorized to. It does not replace system object
authority but supplements it.

The exclusion dictionary consists of a series of files in the Sequel library. Sequel commands let
you set up, maintain, and document the exclusion dictionary. Interactive Sequel programs are
used to enter and maintain the information in the dictionary. Reporting programs can be used to
document the contents of the dictionary.

Each entry in the exclusion dictionary has two parts:

• user: identifies the group of users that is covered by the entry
• object: identifies the libraries, files, or fields in the database that will be excluded from use
You can specify exclusion for individual user profiles, members in a group profile, or all users
on the system. Each authority search made by the user interface determines if either the specific
user or the group profile or all users on the system are excluded from accessing the database
object. Exclusion entries for a group profile will prohibit access for its member profiles as well.

Each dictionary entry references a library, file, or field. You can exclude access to specific librar-
ies and prevent use of all files within them. You can also prevent use of individual files within a
library and allow other files in the library to be used. Field level security can be applied to spe-
cific fields within a file; some fields can be restricted while others are not.

3-2 Sequel 11 Programmer’s Guide - Sequel Security

Inclusion dictionary

Depending on your environment, you may prefer to use an "inclusion" dictionary that lists only
the fields and files that the user is allowed to use, instead of a dictionary that lists those that the
user is excluded from using. You can change the way Sequel's dictionary works by using an
"alternate" security program.

Sequel is shipped so that the dictionary and security program uses "exclusion" rules. Users are
excluded from the fields listed in the dictionary. If you want to change the way that the dictio-
nary works, you need only rename the security program. Follow these steps:

RNMOBJ SQLXCL02 *PGM SQLXCL02_E (rename the "exclusion" program)
RNMOBJ SQLXCL02_I *PGM SQLXCL02 (rename the "inclusion" program)

The dictionary entry and update will work the same, regardless of the type of rules being imple-
mented.

User interface interaction

When a user enters the user interface after the Sequel security option is enabled, each field, file,
and library reference is verified against the exclusion dictionary.

Items excluded from access will not appear in any prompt lists presented to the user. Thus, a
generic or '*ALL' prompt request may return significantly fewer names than would otherwise be
observed using the same request outside of the user interface, or with the security option dis-
abled.

Fields that have been excluded from access cannot be specified directly or indirectly. Reference
to an excluded field in the SELECT, WHERE, GROUP BY, HAVING, or ORDER BY clauses
results in an error message at the workstation. The user must correct the error by removing the
field reference before the query will run successfully. Calculations involving excluded fields are
likewise disallowed.

If any field level exclusion entries apply, the user interface will not allow the SELECT * form of
the SELECT clause. Attempts to use SELECT * when one of the files has field level exclusion
entries will result in an error message.

Enabling Sequel Security 3-3

Enabling Sequel Security

Sequel is shipped so that only standard object authority checking is performed by the system.
This means that when prompting, users will be able to see the names of the libraries and files
that they have operational authority to. They will be able to retrieve information from any files
they have read authority to.

The Sequel security checking mechanism is enabled when *SEQUEL or *STRICT is set as a
user's object authority checking value. Depending on which is applied to the user, it defines
where in the product the values set in the exclusion/inclusion dictionary are enforced. The value
is changed through the displays presented with the Set Sequel Default (SETDFT) command.

For *SEQUEL with unprompted views (object type SQLVIEW), restrictions are enforced only
through the ViewPoint and green-screen view designer displays. In other words, the user inter-
face will refer to the Authority Dictionary before allowing someone to access various database
elements. If no entries in the Authority Dictionary prevent them from accessing the library, file
or field in question, the user will be allowed to see the item in a list and to refer to it within the
query. Restrictions are not applied to statements entered through command entry, Scripts, the
CHGVIEW command, or the execution of existing views.

Note: If you plan to enable and use the *SEQUEL option it is imperative that you also
consider the following:

• Users must not be allowed access to command entry. Command entry functions can
always be used to view the contents of files based on standard system object author-
ity.

• Users must be restricted from the Change View (CHGVIEW) command. Only the
Sequel user interface (Viewpoint and green-screen) performs the additional security
checks that you set up. You can restrict the CHGVIEW command by simply revok-
ing operational authority to the command object.

For *SEQUEL with prompted views (object type SQLVIEWP), restrictions are enforced in the
ViewPoint and green-screen view designers, for statements entered through command entry, in
the CHGVIEW command, in the Script designer, and any ‘Work with’ screen (WRKSEQUEL,
WRKVIEW, and the ViewPoint Explorer).

With *STRICT for any view (with or without a prompt), restrictions are enforced in the View-
Point and green-screen view designers, for statements entered through command entry, in the
CHGVIEW command, in the Script designer, and any ‘Work with’ screen (WRKSEQUEL,
WRKVIEW, and the ViewPoint Explorer). This option provides the strongest level of authority
when used with any Sequel related feature or function.

Change the authority checking value back to *SYSTEM to return to system defined object
checking. The user will be able to access the libraries and files to which they have operational
and read authority. The exclusion/inclusion dictionary will be disabled but not cleared.

Since the type of authority checking to be done is kept in a user's default data area, the type of
checking is user specific. If necessary, you can provide separate authority mechanisms for differ-
ent users so that some users use *SYSTEM security and others use *SEQUEL or *STRICT
authority.

3-4 Sequel 11 Programmer’s Guide - Sequel Security

You must ensure that Sequel users do not have administrative privileges (*CHANGE authority)
to the SQ#DFT data area. Otherwise they will be able to use the SETDFT command to revert to
*SYSTEM authority and enable themselves to objects you want protected. Users that should not
change the defaults need only have *USE authority to the SQ#DFT data area.

Setting up the Authority Dictionary 3-5

Setting up the Authority Dictionary

Two Sequel commands are provided so that you can enter and change the information in the
Authority dictionary. They have no Parameters. Because they present displays at your worksta-
tion, these commands can only be executed within interactive jobs.

The Work With Sequel User Authority (WRKDCTUSR) command lets you choose a user profile
and then indicate which objects should be excluded from access.

The Work With Sequel Object Authority (WRKDCTOBJ) command lets you choose an object
(library, file, or field) and indicate the users that should be prohibited from using it.

The two commands produce the same result; entries identifying objects and users are placed in
the Authority Dictionary. The command you choose will depend on personal preference and the
task at hand.

If you want to prevent a list of users from accessing a particular field, use WRKDCTOBJ to
first identify the field, and then set the list of users.

If you want to create several exclusion entries for a specific user, use WRKDCTUSR to
identify the user, and then specify the list of libraries, files, and/or fields.

The following pages describe how to use the commands to create the exclusion/inclusion entries
that you need.

Work With Sequel Authority By User

After entering the WRKDCTUSR command there may be a slight delay while Sequel creates
work files and acquires the names of the user profiles on your system. You will see a display that
looks like the one below. It lets you take a user oriented approach to exclusion: first identifying
users that need to be prevented from accessing objects, then selecting the objects that need to be
secured. Or in the case in inclusion: first identifying users that need to have access to objects,
then selecting the objects that need to be accessible.

3-6 Sequel 11 Programmer’s Guide - Sequel Security

Use this display to indicate which users you want to work with. All user profiles to which you
have operational authority are shown in the subfile on the display. Profiles with entries in the
exclusion dictionary are presented with high intensity (bold) characters.

The first element in the list is the special '*ALL' profile entry. Any exclusion entries made for
this profile will apply to all users who access the user interface.

Function Keys
F11 can be used to switch between the display above and one showing five columns of user pro-
file names without text.

Use F7 to switch between the user oriented and the object oriented modes of exclusion entry.
The user oriented mode (described here) allows you to indicate which objects should be omitted
from a particular user's capabilities, the object oriented mode allows you to specify an object,
then indicate the users that should be excluded from using it.

F3 will let you exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

The Help key can be used to obtain further description about the display.

Entry Fields
You can jump to a specific position in the name list by typing a series of characters into the
"Starting at:" entry field at the top of the display and pressing the Enter key. The list will reap-
pear with the first user profile matching or after your search string positioned at the top.

Choose one or more user profiles that you want to work with by placing a 1 next to them. Alter-
natively, you can indicate a specific user profile by typing its name at the top left of the display.
If you choose more than one, each will be processed in turn. When you have finished making
specifications for one user, you will be able to go on to the next. After you have chosen a profile,
you will be presented with a display allowing you to make exclusion entries.

Exclusion/Inclusion Entry

The exclusion entry display lets you indicate the items in the database that should be made
unavailable to the user you have chosen. If the user you have indicated is a group profile, the
items you exclude will be excluded for all members in the group as well. If you have chosen the
'*ALL' user, the items you list on this display will be excluded for all users of the user interface.

The inclusion entry display lets you indicate the items in the database that should be made avail-
able to the user you have chosen. If the user you have indicated is a group profile, the items you
include will be included for all members in the group as well. If you have chosen the '*ALL'
user, the items you list on this display will be included for all users of the user interface.

Setting up the Authority Dictionary 3-7

The display shows three columns that demonstrate the exclusion dictionary. Each row indicates a
specific field, all fields from a specific file, or all files from a given library. For example, the first
row on the display above indicates that all fields in the DATEJOIN file in the PILOT library will
be unavailable to the user or members of the group profile. They are effectively prevented from
using the DATEJOIN file in any Sequel retrievals or reports, even though they (and the pro-
grams they run) may have object and data rights authority to the file.

The last entry indicates that the user and group members associated with it will be unable to
access any files in the STATUS library. Everything in the STATUS library will be "off limits" to
the GROUPADM user and any members associated with it. STATUS will not appear in any
library lists presented by the user interface, and cannot be referenced in the FROM clause, even
unqualified (*LIBL) references are prohibited if they access the STATUS library.

Other entries indicate specific fields to be excluded from this user's view of the database. These
fields will not appear in any lists, nor can they be referenced in any clause of the SQL statement.

If a library, file, or field no longer exists within the database, the entry will be presented in
reverse image on the display. Outdated entries can be removed explicitly by blanking them out,
or can be cleaned up using the Reorganize Authority Dictionary (RGZDCT) command.

Function Keys
F11 can be used to switch between the display above and one showing two sets of object col-
umns without text.

F12 can be used to end this display and return to the previous display showing user profile
names.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

The Help key can be used to obtain further description about the display.

3-8 Sequel 11 Programmer’s Guide - Sequel Security

Entry Fields
Change entries as needed simply by typing over them. Add new entries to the list by typing into
a set of blank lines. Remove existing entries by blanking them out.

You can request selection assistance by making a prompting request on a blank entry. Prompting
requests can be made as follows:

library: A generic name, or *ALL or a question mark (?) will present the library selec-
tion list satisfying your request. *ALL or a question mark presents all libraries to which you
have operational rights.

file: If a library name is specified, a generic name, or *ALL or a question mark (?)
will present the file selection list showing all files in the library you have indicated that satisfy
your request. *ALL or a question mark presents all files in the library to which you have opera-
tional rights. Files already chosen for this user will appear in bold (high intensity) characters on
the display.

field: If you have indicated both a library and a file name, *ALL or a question mark
(?) will present the field selection list showing all the fields in the specific file you have identi-
fied. Fields already chosen for this user will appear in bold (high intensity) characters on the dis-
play.

If you make a prompt request either the library, file, or field selection list will appear. You can
use the selection lists to select several objects. Once you have made your selections, the exclu-
sion entries will be made automatically for you. The display above will re appear and you can
review the entries before continuing.

Library Selection

The library selection display will be presented when you make a prompt request in the library
field on the exclusion/inclusion entry display. All libraries that you have operational authority to
and meet your selection criteria will be listed. The display below resulted from a generic (S*)
prompt request.

Libraries are shown in alphabetical order. Libraries with current exclusion/inclusion entries for
the user you have indicated will be presented in bold (high intensity) characters.

Setting up the Authority Dictionary 3-9

Function Keys
F12 can be used to end this display and return to the previous display showing objects which
have been excluded for this user.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

Entry Fields
You can jump to a specific position in the name list by typing a series of characters into the
"Starting at:" entry field at the top of the display and pressing the Enter key. The list will reap-
pear with the first library matching or after your search string positioned at the top.

Choose one or more libraries that you want to work with by placing a 1 next to them. When you
do, the file selection display (shown below) will appear. It lets you choose files to be excluded
from the user's view. If you choose more than one library from the display above, each will be
processed in turn. When you have finished selecting items from one library, you will be able to
go on to the next.

File Selection

The file selection display will be presented when you make a prompt request in the file name
part of the exclusion/inclusion entry display, or after a library has been chosen from the library
selection display. All files that you have operational authority to and meet your selection criteria
will be listed. The display below resulted when the SEQUELEX library was chosen from the
library selection display.

Files are shown in alphabetical order. Files with current exclusion/inclusion entries for the user
you have indicated will be presented in bold (high intensity) characters.

3-10 Sequel 11 Programmer’s Guide - Sequel Security

Function Keys
F12 can be used to end this display and return to the previous display showing objects which
have been excluded/included for this user. If you have made choices on the library selection or
exclusion/inclusion entry displays that result in other lists, you will see them next.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

Entry Fields
Choose one or more files that you want to work with by placing a 1 next to them. When you do,
the field selection display (shown below) will appear. It lets you choose fields to be excluded
from the user's view. If you choose more than one file from the display above, each will be pro-
cessed in turn. When you have finished selecting items from one file, you will be able to go on to
the next.

Choose the *ALL entry at the top of the display to indicate that you want all files in the library
excluded from the user's view. If you choose to exclude all files from the user, you should
remove any redundant entries in the dictionary which specify individual files or fields within the
library indicated.

Field Selection

The field selection display will be presented when you make a prompt request in the field name
part of the exclusion entry display, or after a file has been chosen from the file selection display.
All fields in the file will be listed. The display below resulted when the ORDHEAD file was
chosen from the file selection display.

Fields are shown in order of their appearance in the record format. Fields with current exclusion/
inclusion entries for the user you have indicated will be presented in bold (high intensity) char-
acters.

Setting up the Authority Dictionary 3-11

Function Keys
F12 can be used to end this display and return to the previous display showing objects which
have been excluded for this user. If you have made prompt requests on other selection displays
or the exclusion entry display, you will see them next.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

The Help key can be used to obtain further description about the display.

Entry Fields
Choose one or more fields that you want to add to the exclusion dictionary by placing a 1 next to
them. After you make your choice(s), you will be presented with the exclusion entry display or a
selection display resulting from a previously entered prompt request.

Choose the *ALL entry at the top of the display to indicate that you want all fields in the file
excluded from the user's view. If you choose to exclude all fields from the user, you should
remove any redundant entries in the dictionary which specify individual fields within the file
indicated.

Work With Sequel Authority By Object

After entering the WRKDCTOBJ command there may be a slight delay while Sequel creates
work files and acquires the names of the user profiles on your system. You will see a display that
looks like the one below. It lets you take an object oriented approach to exclusion: first identify-
ing objects that need to be excluded from user access, then selecting the users that must be
excluded from accessing them. Or in the case of inclusion identifies the objects that need to be
included for the user, then selection selecting the user that must be included to those objects.

Use this display to begin the process of entering, reviewing and changing exclusion entries for
database elements: libraries, files, and fields. All library and file objects currently represented in
the exclusion dictionary are shown in the subfile on the display. Text for the library or file is also
presented. Objects that are no longer on the system will be shown in reverse image.

3-12 Sequel 11 Programmer’s Guide - Sequel Security

An entry in the subfile listing the library name and '*ALL' in place of a specific file name indi-
cates that one or more users have been excluded from all of the files in this library. Entries spec-
ifying both the library and file name indicate that users have been excluded from some or all of
the fields in the specific file listed.

Function Keys
F11 can be used to switch between the display above and one showing three sets of library and
file names without text.

Use F7 to switch between the user oriented and the object oriented modes of exclusion entry.
The user oriented mode allows you to indicate which objects should be omitted from a particular
user's capabilities, the object oriented mode (described here) allows you to specify an object,
then indicate the users that should be excluded from using it. Both accomplish the same result,
but use a different approach to do it.

F3 will allow you to exit the authority entry program.

The Help key can be used to obtain further description about the display.

Roll keys can be used to roll forward and backward in the list of user names.

Entry Fields
You can jump to a specific position in the object list by typing a series of characters into the
"Starting at:" entry field at the top of the display and pressing the Enter key. The list will reap-
pear with the first library name matching or after your search string positioned at the top.

Choose one or more objects that you want to work with by placing a 1 next to them. When you
do, the exclusion entry display (p. 0 18) will appear. It lets you enter the users to be excluded
from using the object. If you choose more than one object from the display above, each will be
processed in turn. When you have finished entering selecting items for one object, you will be
able to go on to the next.

If you choose an entry listing '*ALL' as the file name, the exclusion entry display will appear.
You will be allowed to specify users that should be excluded from accessing all the files in the
specified library.

If you choose an entry that includes both a library and a file name, the field selection display will
appear. It allows you to indicate which fields within the chosen file you want to protect. Once
you choose a field (or *ALL fields) from the file, the exclusion entry display will allow you to
indicate the users that should not be allowed to access them.

You can use the entry fields at the upper left of the display to indicate that you want to work with
specific objects whether or not they are currently in the exclusion list. You can enter one of the
following into these entry fields:

A generic library or *ALL. The list of libraries meeting your criteria will be presented. You
can select one or more of them. Sequel will present the list of files in each library in turn so
that you can select the file(s) you want to exclude/include. The field selection display will
appear after each file selection so that you can indicate the fields to be protected.

Setting up the Authority Dictionary 3-13

A specific library name and *ALL or a generic file name. All files in the library will be pre-
sented so that you can select one or more of them. After you have chosen a file, the field
selection display will appear so you can choose the fields to be excluded/included.

A specific library and file combination. The field selection display will appear and allow
you to choose the fields within the file to be excluded. Once you have made your selec-
tion(s), the exclusion/inclusion entry display will appear so that you can select individual
users.

Library Selection

The library selection display will be presented when you make a prompt request in the library
field on the primary WRKDCTOBJ display. All libraries that you have operational authority to
and meet your selection criteria will be listed. The display below resulted from a generic (S*)
prompt request.

Libraries are shown in alphabetical order. Libraries with current exclusion/inclusion entries will
be presented in bold (high intensity) characters.

Function Keys
F12 can be used to end this display and return to the previous display showing objects which
have exclusion/inclusion entries.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

The Help key can be used to obtain further description about the display.

Entry Fields
You can jump to a specific position in the name list by typing a series of characters into the
"Starting at:" entry field at the top of the display and pressing the Enter key. The list will reap-
pear with the first library matching or after your search string positioned at the top.

3-14 Sequel 11 Programmer’s Guide - Sequel Security

Choose one or more libraries that you want to work with by placing a 1 next to them. When you
do, the file selection display (shown below) will appear. It lets you choose files to be excluded
from the user's view. If you choose more than one library from the display above, each will be
processed in turn. When you have finished selecting items from one library, you will be able to
go on to the next.

File Selection

The file selection display will be presented when you make a prompt request in the file name
part of the primary WRKDCTOBJ display, or after a library has been chosen from the library
selection display. All files that you have operational authority to and meet your selection criteria
will be listed. The display below resulted when the SEQUELEX library was chosen from the
library selection display.

Files are shown in alphabetical order. Files with current exclusion/inclusion entries will be pre-
sented in bold (high intensity) characters.

Function Keys
F12 can be used to end this display and return to the previous display showing objects which
have exclusion entries. If you have made choices on the library selection or primary WRKDCT-
OBJ displays that result in other lists, you will see them next.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

The Help key can be used to obtain further description about the display.

Entry Fields
Choose one or more files that you want to work with by placing a 1 next to them. When you do,
the field selection display (shown below) will appear. It lets you choose fields to be excluded/
included from the user views. If you choose more than one file from the display above, each will

Setting up the Authority Dictionary 3-15

be processed in turn. When you have finished selecting items from one file, you will be able to
go on to the next.

Choose the *ALL entry at the top of the display to indicate that you want all files in the library
excluded/included from user views. If you choose to exclude/include all files, the exclusion/
inclusion entry display will appear so that you can indicate the users to be excluded/included
from accessing the files in the indicated library.

Field Selection

The field selection display will be presented when you select a file entry from the primary
WRKDCTOBJ display, or after a file has been chosen from the file selection display. All fields
in the file will be listed. The display below resulted when the ORDHEAD file was chosen from
the file selection display.

Fields are shown in order of their appearance in the record format. Fields with current exclusion/
inclusion entries will be presented in bold (high intensity) characters.

Function Keys
F12 can be used to end this display and return to the previous display showing objects which
have been excluded/included for this user. If you have made prompt requests on other selection
displays or the exclusion entry display, you will see them next.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

The Help key can be used to obtain further description about the display.

Entry Fields
Choose one or more fields that you want to add to the exclusion dictionary by placing a 1 next to
them. Choose the *ALL entry at the top of the display to indicate that you want all fields in the
file excluded/included from user views. After you make your choice(s), you will be presented

3-16 Sequel 11 Programmer’s Guide - Sequel Security

with the exclusion/inclusion entry display that allows you to indicate which users should be
excluded/included from accessing each specified field.

Exclusion/Inclusion Entry

The exclusion entry display shows all exclusion entries for the item you have selected. It allows
you to indicate the users which should be excluded from accessing the file or field you have cho-
sen. If a user is a group profile, the item you have selected will be excluded for all members in
the group as well.

The inclusion entry display shows all inclusion entries for the item you have selected. It allows
you indicate which users should have access to the file or field you have chosen. If a user is a
group profile, the item you have selected will be included for all members in the group as well.

The display lists each user profile excluded from the item shown at the top of the screen. Users
are presented in alphabetical order. Current text for the user profile is also shown. The example
above shows that QPGMR, QUSER and QSECOFR will be prohibited from accessing the
PAYAM field in the CUSTMAST file in the SEQUELEX library. Any users in the profile groups
created by these three profiles will also be excluded from accessing this field.

If a user profile no longer exists on the system, the entry will be presented in reverse image on
the display. Outdated entries can be removed explicitly by blanking them out, or can be cleaned
up using the Reorganize Authority Dictionary (RGZDCT) command.

Function Keys
F11 can be used to switch between the display above and one showing six columns user profile
names without associated text.

F12 can be used to end this display and to process the next selection request or return to the pri-
mary WRKDCTOBJ display.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

Setting up the Authority Dictionary 3-17

The Help key can be used to obtain further description about the display.

Entry Fields
Change entries as needed simply by typing over them. Add new entries to the list by typing into
a set of blank lines. Remove existing entries by blanking them out.

Specify the special *ALL user to indicate that all users should be excluded/included from
accessing the object identified at the top of the display. If you make this entry, other profiles also
listed on the display should be removed since they are redundant.

You can request user selection assistance by making a prompting request on a blank entry.
Prompting requests can be made by typing a generic name, or *ALL or a question mark (?) into
the entry. The user selection display shown below will appear and you can choose the profiles
you want to add to the list. Users already chosen for this object will appear in bold (high inten-
sity) characters on the display.

User Selection

The user selection display will be presented when you make a prompting request from the exclu-
sion/inclusion entry display. All user profiles meeting your prompt request to which you have
operational authority will be listed. The display below shows the result of a *ALL prompt:

User profiles are listed alphabetically. Users with current exclusion/inclusion entries for the
object you have selected will be presented in bold (high intensity) characters.

Function Keys
F12 can be used to end this display and return to the exclusion entry display. If you have made
more than one user prompt request on exclusion/inclusion entry display, you will see them next.

F3 will allow you to exit the authority entry program.

Roll keys can be used to roll forward and backward in the list of user names.

3-18 Sequel 11 Programmer’s Guide - Sequel Security

The Help key can be used to obtain further description about the display.

Entry Fields
Choose one or more users that you want to add to the Authority Dictionary by placing a 1 next to
them. Choose the *ALL entry at the top of the display to indicate that you want all users to be
excluded from accessing the object you have identified. After you make your choice(s), you will
be presented with the exclusion/inclusion entry display or your next prompt.

Printing the Authority Dictionary 3-19

Printing the Authority Dictionary

Two commands are included with Sequel to print the contents of the Authority Dictionary. As
with the interactive entry, the reports have either a user profile or object orientation.

List Authority Dictionary By User (LSTDCTUSR) Command

This command has no Parameters and can be run from either a batch or an interactive environ-
ment.

The report looks like the one below. It shows all the exclusion entries for each user profile.
Entries are listed in alphabetical order and are arranged by library and file. Current user profile,
library, and file text are printed on the report.

 11/18/09 11:23:52 Page 2 SEQUEL Authority Dictionary By User
 User/library/file Field list

 GROUPADM Administrative Group

PILOT PILOT Job scheduling system

DATEJOIN Join:JOBSCH,RPTHDR,JOBHDR,RPTDTL by jobnam,rptnam *ALL

SEQUELEX SEQUEL Examples and sample files

CUSTMAST SEQUEL Outfile:Customer Master AMTDU CRLIM HIGHB MTD$C
OROPN PAYAM PAYDY PAYMN
PAYYR YTD$C

ORDHEAD Open Orders - Header file INVNO ORTOT ORVAL

PARTMAST Product Master STDC1

STATUS STATUS Job & Resource Accounting

*ALL *ALL

 QPGMR Programmer and Batch User

SEQUELEX SEQUEL Examples and sample files

CUSTMAST SEQUEL Outfile:Customer Master CPHON CRLIM CSTTE CTYPE
CZIPC PAYAM

3-20 Sequel 11 Programmer’s Guide - Sequel Security

List Authority Dictionary By Object (LSTDCTOBJ) Command

This command has no Parameters and can be run from either a batch or an interactive environ-
ment.

The report looks like the one below. It shows all the Authority Dictionary entries for each file
and field. Entries are listed in alphabetical order and are arranged by library, file, and field. Cur-
rent library, file, and field text are printed on the report.

 11/18/09 11:24:20 Page 3 SEQUEL Authority Dictionary By Object
 Library/File/Field User list

 PILOT Job scheduling and report distribution

 DATEJOIN Join:JOBSCH,RPTHDR,JOBHDR,RPTDTL by jobnam,rptnam
*ALL GROUPADM

 SEQUELEX SEQUEL Examples and sample files

CUSTMAST SEQUEL Outfile:Customer Master
 AMTDU Outstanding A/R balance GROUPADM
 CPHON Phone number QPGMR
 CRLIM Credit limit in dollars QPGMR GROUPADM
 CSTTE Customer state QPGMR
 CTYPE Customer type QPGMR
 CZIPC Customer zipcode GROUPADM
 MTD$C Month to date sales GROUPADM
 OROPN Total open orders in dollars GROUPADM
 PAYAM Last payment amount QPGMR QSECOFR GROUPADM
 PAYDY Last payment date - day GROUPADM
 PAYMN Last payment date - month GROUPADM
 PAYYR Last payment date - year GROUPADM
 YTD$C Year to date sales GROUPADM

 ORDHEAD Open Orders - Header file
 INVNO Invoice number GROUPADM
 ORTOT Retail value of remaining on order GROUPADM
 ORVAL Retail value of order GROUPADM

 PARTMAST Product Master
 STDC1 Total std cost - base standard GROUPADM

 STATUS STATUS Job & Resource Accounting

 *ALL
 *ALL GROUPADM

Reorganizing the Authority Dictionary 3-21

Reorganizing the Authority Dictionary

Sequel's Authority Dictionary is, in a sense, disassociated from your database. Entries you make
are based on the current state of the database and the objects in it. As the database evolves and
new objects are added and existing objects are changed or removed, the Authority Dictionary
may need to change as well. It will not automatically be updated by the operating system or by
Sequel.

You should periodically use the Reorganize Sequel Authority Dictionary (RGZDCT) command
to verify that only currently valid entries exist in the Authority Dictionary. This command has no
Parameters and can be run in a batch environment.

The command causes all entries in the Authority Dictionary to be checked for relevance. Entries
will be dropped if they name:

a user profile that no longer exists

a library or file that no longer exists

a field that no longer exists in the specified file

When the command has completed, deleted records will be removed from the dictionary via the
Reorganize Physical File Member (RGZPFM) command.

3-22 Sequel 11 Programmer’s Guide - Sequel Security

Customizing Sequel Security

The Sequel Authority Dictionary may not meet all of your security requirements. You can
replace Sequel's security mechanism with your own customized security approach if you wish.
This section describes the process you should use if you choose to have Sequel use your own
version of a security system.

Each time the user interface gets a list of libraries, files or fields, or checks a statement that has
been entered by the user, program SQLXCL02 is called. It verifies that the user is authorized to
the specific database element.

You can create your own version of SQLXCL02. If you put it ahead of Sequel on the library list,
or replace the one in the Sequel library, your "custom" version will be run instead of Sequel's
"standard" checking. If you do create your own program, do not place the source code for it in
the Sequel or SEQUELEX libraries. They are usually replaced when a new version of the soft-
ware is installed.

Program SQLXCL02 must accept these Parameters:

Type Description Attributes

Input Job Identifier CHAR(33)

Input Library CHAR(10)

Input File Name CHAR(10)

Input (reserved) CHAR(10)

Input Field Name CHAR(10)

Input Option CHAR(1)

Output Result CHAR(7)

The first Parameter (job identifier) is further defined as:

Input User Profile CHAR(10)

Input Group Profile CHAR(10)

Input Job Name (leading characters)CHAR(6)

Input Job Number CHAR(6)

Reserved CHAR(1)

Each time the program is called, the user's job name, profile, group profile and job number is
supplied. Your authority checking program can use them to determine if the user should be
excluded from using a particular database element.

SQLXCL02 returns a 7 character result. It is either blank or a valid message identifier in
Sequel's DBIOMSG message file that indicates an error condition.

The option Parameter indicates the type of authority check to be made as follows:

Customizing Sequel Security 3-23

'0 Is SELECT * allowed for the indicated file and library? If allowed, the result should be
set to blanks. If not, the result should be set to 'QRY5002'.

'1 Can this library or library/file combination be used? If allowed, the result should be set
to blanks. If not, the result should be set to 'QRY5000'.

'2 Can the specific library/file/field combination be used? If so, set the result to blanks.
Otherwise, set the result to 'QRY5001'.

'9 Deactivate the authority checking program it is no longer needed by the job step.
(SETON LR if it is an RPG program). You should code your program so that it will
RETURN without deactivating each time it is called until option 9 is received.

3-24 Sequel 11 Programmer’s Guide - Sequel Security

Sequel Programming 4-1

Sequel Programming

Although Sequel statements are very useful on an ad-hoc basis, perhaps the greatest potential of
Sequel lies in:

• runtime substitution facilities
• your ability to combine Sequel statements and views with your CL and high level language

programs
With these capabilities, you can remove the external user from the complexities of Sequel
entirely, simplifying their tasks and/or restricting them from accessing some Sequel functions.
They can get the benefits of advanced data management without forcing you to create the com-
plex software that delivers them. By allowing you to perform requests "under the covers" of your
own applications, Sequel gives you absolute control over the presentation of information to your
users.

This chapter will discuss the integration of Sequel's capabilities into your programmed environ-
ments. Three general types of programmed access are discussed: static views, dynamic views,
and open data path access.

As an additional aid, the SEQUELEX library contains a file with CL source members and sev-
eral demonstration programs. Review the file named SOURCE and examine the RUNTIME
examples for examples of the techniques described in this section.

Static views

Static views and reports run the same way each time they are executed. They choose the same
fields, use the same files, make the same record selections, and return records in the same order
each time they are run. The information that is returned will change only as the data in the under-
lying file changes.

Static views and reports are the simplest to make available to your users. You create the views
and reports that they will need, and then make them available through menu options, function
keys, or Sequel's "work with" displays. It is extremely easy to include DISPLAY, PRINT,
REPORT, and EXECUTE commands in your CL programs. Using Sequel views instead of pro-
grammed solutions can eliminate a considerable programming effort.

Dynamic views

Many query requirements and Sequel applications require a degree of flexibility that cannot be
achieved by simple static views and reports.

In many cases, only the record selection criteria in the WHERE or HAVING clauses will change
from one execution to the next. You may want the user to supply specific select/omit criteria that
should be used when the query is run.

On the other hand, perhaps the ordering of records will be different from one execution to the
next; customer records might be ordered sometimes by name, at other times by telephone num-
ber or amount owed, or some other field within the file.

4-2 Sequel 11 Programmer’s Guide - Sequel Programming

In yet another case, you may want the user to indicate the specific file, library, or member to be
used when the data is accessed. Creating separate views for each circumstance would be imprac-
tical, or even impossible - given the range of choices you may wish to provide the user.

The best solution is to create (or complete) the Sequel request when the view is run - dynami-
cally adapting the view to the user's requirements. You can create dynamic Sequel requests in
two different ways:

create runtime prompted views that include variable definitions

create high level language (RPG, COBOL, etc.) programs that construct Sequel statements
or views when the program is run

In most cases you will find that using Sequel's variable substitution capabilities will provide you
with the easiest and fastest method of creating flexible requests.

Open data path

Occasionally, you may have a requirement for flexible or "high function" access to your data and
also need the complex manipulation or reporting capability that can only be provided by a HLL
program. Sequel's Open Sequel File (OPNSQLF) command will supply an SQL defined data
path for your programs. You decide how the data will be used, Sequel serves it to your programs
as you (or your users) request it even using a variable view!

Simple View and Report Execution 4-3

Simple View and Report Execution

All Sequel views and reports can be placed on user menus or accessed from production pro-
grams by function key or selection options. This type of view and report execution is the easiest
to implement and involves the least amount of programming effort.

Control language menu programs can run views and reports simply by using the DISPLAY,
PRINT, EXECUTE, and REPORT commands as needed. High level language programs (RPG,
COBOL, PL/I) can make calls to the QCMDEXC or QCAEXEC program to accomplish the
same results. The CL source below shows part of a program that tests a menu option and per-
forms Sequel commands.

 .
 .
1000 MONMSG QRY0000
 .
 .
2000 IF (&OPTION=3) THEN(DISPLAY SEQUELEX/CUSTLIST)
2100 IF (&OPTION=4) THEN(PRINT SEQUELEX/CUSTLIST)
2200 IF (&OPTION=5) THEN(REPORT SEQUELEX/CUSTLISTR)
 .
 .

While not required, the MONMSG command at statement 1000 prevents Sequel escape mes-
sages from causing an unmonitored function check in the menu program. You can use the
MONMSG command to cause the program to continue statement execution at a different point
in the program if you wish. Refer to the Control Language Reference manual and Control Lan-
guage Programmer's Guide for more information about MONMSG and CL programming.

If a variable view (SQLVIEWP) is involved in the request and one or more of the view's vari-
ables are not supplied on the command, the runtime prompt for the view will automatically
prompt the user for input when the request is run. Refer to the Sequel SQL Reference Guide for
additional details about the runtime prompting program.

4-4 Sequel 11 Programmer’s Guide - Sequel Programming

Variable Views

A Sequel view can contain up to 50 variables. Each one represents some portion of a complete
Sequel statement. When the view is run, the user or a program supplies the value for each vari-
able in order to create a complete query statement. The query is then run as if the SQL statement
had been entered directly on the request.

The Create View (CRTVIEW) command lets you include one or more variables in your view
definition. The SQL statement in the view references the variable name(s) which are further
defined by the VARSPECS Parameter. Each variable definition can include the following:

Prompt text and extended help
Attributes (type, length, and precision)
Default value
Integrity checking rule
SQL statement dependencies

If you are not using Sequel's User Interface, you will find it much easier to create a variable view
if you use the OS/400 command prompter when specifying the CRTVIEW command rather than
trying to enter it directly from a command entry line. Each variable reference can be entered in
its entirety with helpful prompts to guide you. Hint: when using the command prompter to create
a variable view, work from the display showing value choices (F11), rather than Parameter key-
words. This way, each variable specification will fit on a single display page.

When the view is run, the variable value(s) can be supplied by the SETVAR Parameter of the
Sequel request. If values for all of the variables are included on the Sequel request the view will
execute without delay. Otherwise, the Sequel runtime prompter will present a display to the user
and allow values to be specified for each of the remaining variables. Refer to Chapter 1 of the
Sequel SQL Reference Guide for information about the runtime prompting process.

Variable views can be run interactively or from a batch subsystem. If a variable view is submit-
ted for batch execution, each of its variables must be supplied through the SETVAR Parameter
when the request is submitted. You can restrict view execution to a "batch only" environment by
using the BCHPRINT, BCHEXECUTE, and BCHREPORT commands. Refer to Part 2 of this
Programmer's Guide for additional information about these commands.

Variable placement

Variables within the SQL statement are identified by a leading ampersand (&) and a user defined
name. If a variable reference is included within a quoted string in the SQL statement, the vari-
able name must be prefixed with two ampersand (&) characters, rather than the usual one.

Any part of the SQL statement can include a variable reference. The variable substitution can
complete the query by supplying any fraction of the SQL statement even the entire statement!
This gives you a very high level of flexibility in designing dynamic views.

For example, the following statement creates the simplest (and most powerful) runtime view. It
will allow a complete SQL statement to be substituted when the view is run:

CRTVIEW SEQUELEX/QUERY SQL('&query')
 VARSPECS((&query expr 1000 *n 'SQL Statement'))

Variable Views 4-5

The view contains only the variable name and its definition. A complete statement must be
passed (or prompted) when the view is run. Any valid SELECT statement will be accepted and
processed. Depending on the Sequel command used to run the request, results will be returned to
the display, printed page, or an output file.

If the SETVAR Parameter is not used to specify the SQL statement when the view is run, Sequel
will present a prompt display requesting statement entry. It will look like the one below.

Once the prompt has appeared, the user can enter the statement or use function key 4 to extend
the prompt to its full length (1000 characters) and enter the statement from the extended display.
Review the information in Chapter 1 of the Sequel SQL Reference Guide for additional details
about using the runtime prompting facility.

The command below creates a view that returns all the data in any file member:

CRTVIEW VIEW(SEQUELEX/GENERIC) TEXT('Generic file query')
SQL('SELECT rowid colhdg("&&file" "row" "number"),*.1 FROM &lib/&file(&mbr)')
VARSPECS((&FILE NAME 10 *N 'File name' *N 'comp(GT *BLANK)' *N *N)

 (&LIB NAME 10 *N ' Library' '*LIBL' 'comp(GT *BLANK)' *N '/')
 (&MBR NAME 10 *N 'Member' '*FIRST' 'comp(GT *BLANK)' '(' ')'))

Three variables (&lib, &file, &mbr) are used in the SQL statement. The &file variable is used
twice: it appears in the SELECT clause inside a quoted string, and also in the FROM clause.

All the variables are defined as having the NAME type. When the view is run, variable values
will be checked against AS/400 naming rules. Each variable value is allowed to be up to 10 char-
acters long. The integrity rules prevent blanks from being accepted.

If *OMIT or *ALL is specified for a library value, the slash (/) that would normally follow the
library name will be omitted from the SQL statement. Likewise, if *OMIT or *ALL is specified
for the member name, the parentheses before and after the member will be suppressed.

Variable definition

The variables will be presented on the runtime prompt in the order they are defined within the
VARSPECS list, not the order they appear within the statement. Your choice of the order in the
VARSPECS list determines the order of fields within the prompt. As a result, the prompt for the
view above will list variables in file, library, and then member order.

4-6 Sequel 11 Programmer’s Guide - Sequel Programming

Each variable definition within the list has nine elements. The example above shows that *N can
be used as a placeholder to indicate that a value is not supplied for one of the elements. The ele-
ments within each variable are (in order):

Variable name
Type of value (NUMBER, NAME, QSTRING, EXPR)
Length
Precision
Prompt text
Default value
Integrity rule (CHECK, COMP, VALUES, RANGE)
Statement characters ahead of the variable to strip if omitted
Statement characters behind the variable to strip if omitted
Extended help text

Refer to the Create View (CRTVIEW) command on page 2-37 and the discussion below for
more information about the list elements and their allowed values.

Variable type

The power of runtime substitution is further enhanced by your ability to define the type and
length of the acceptable values.

Sequel allows you to define four types of variables: Number, Name, Qstring, and Expr. Choos-
ing the right variable type is essential to creating a useful definition.

Choose the NUMBER type if you want the user to be able to enter a single value that must
be numeric. Positive and negative (leading sign) numbers are allowed. If the precision value
is greater than zero, fractional values will be allowed as well.

If you want the user to enter a single value that must start with an alphabetic character (or an
asterisk), specify the NAME type. The value must meet OS/400 requirements for a name.
Basic and extended names can be entered if surrounded with quotation marks. Refer to the
CL Programmer's Guide for additional information about name syntax.

If a DATE type is specified, a valid date value must be entered. The format of the entered
data must correspond to the type indicated by the DTSTYLE value or have USA, ISO, EUR,
or JIS format.

Choose the QSTRING type if you want the user to enter a value that will be used as a quoted
string within the statement. The value can be any sequence of characters, including spaces.
Sequel will automatically supply quotation marks if they are not entered by the user when
the view is run.

The EXPR type allows a user to specify any sequence of characters, including blanks, that
will be merged with the SQL statement without any additional constraints.

Length

Specify a value from 1 to 1085 to indicate the allowed length of the substitution value. If the
variable type is NAME, the maximum length is 10. If the variable type is NUMBER, the maxi-
mum length is 29. If the variable type is QSTRING, the quotes are included in the length.

Variable Views 4-7

Precision

If the variable type is NUMBER, specify a value between 0 and the maximum length indicated
by the length element (above). If the variable type is not NUMBER, this value must be 0 or left
unspecified (*N).

Prompt text

You can specify up to 32 characters of text to appear next to the variable entry field on the
prompt display. Use the special value *BLANK to suppress the label entirely. You can omit text
and force the variable name to be displayed on the prompt by leaving the prompt text unspeci-
fied, or by using the special value *NONE.

Default value

Each variable can be assigned a default value. This value will appear on the prompt when it is
first displayed, and will be used if not changed by the user. The default value is also used if the
runtime request indicates the variable name and does not specify the corresponding value (or
uses '*N'). If a default value is not specified, a zero value will be used for NUMBER variables, a
blank will be used for other variable types.

The default value must conform to the type, length, and integrity specification of the variable.
You can specify up to 80 characters for the default value but must not exceed the maximum
length indicated by the length element.

Keywords can be used to retrieve system values for use as the default value. The keywords
include the following:

In addition to keywords, View and SQL derived expressions can be returned as a default value.

VIEW(lib/viewname) - The value of the first row and column returned by the view will be used
as a default value. For example:
VIEW(sequelex/custlist)

SQL(expression) - Use this to return a specific column from a file or a derived value for use as
a default. For example: SQL(ZONED(current date - 2 days)), or SQL(select cname from
sequelex/custmast)

Note: The value returned by an SQL expression must be character or ZONED numeric—not
Packed. Use either the ZONED or CHAR function in the expression.

Keyword Usage Length Comment
*JOBNBR Retrieve current job number 6
*JOB Retrieve current job name 10
*USER Retrieve current user name 10
*JOBDATE Retrieve current job date 6 In job date format
*SYSDATE Retrieve current system date 6 In job date format
*SYSTIME Retrieve current system time 6 In HHMMSS

4-8 Sequel 11 Programmer’s Guide - Sequel Programming

Integrity Check

The integrity check can be used to further constrain the acceptable input to the view. Sequel will
validate the user's entry according to the specified rule(s) and issue an error if the rule is vio-
lated.

VALUES, RANGE, and COMP rules are mutually exclusive. That is, only one of these rules can
be specified. CHECK(len) and/or CHECK(uc) can be used in conjunction with any other rule. If
more than one rule is entered, the rules must be separated by commas. CHECK(len) and
CHECK(uc) rules can be combined into a single rule as CHECK(len uc) or CHECK(uc len).

The special value *BLANK can be used within a rule to indicate a blank value for NAME,
EXPR, and QSTRING variables.

When the rule is evaluated for NAME and EXPR variables, upper/lower case conflicts between
the user's input and the rule are disregarded. The value(s) specified in the rule can be entered in
upper, lower, or mixed case. When the view is run, the user's value is compared against the
value(s) in the rule in a case independent manner. Values for QSTRING variables are case sensi-
tive and must be entered by the user in the exact form indicated by the rule.

The valid rules and their syntax are listed below:

COMP(rel-op value) Choose one of six relational operators (EQ, NE, GT, LT, GE, LE) and
specify a value that conforms to the type and length elements. Ex. COMP(GT 0) or COMP(EQ
"ABC")

[NOT] VALUES(value,value,value ...) specify a list of values that will constrain the user's entry.
Separate items in the list with commas. Only a value matching one of the items in the list will be
accepted when the view is run. Ex. VALUES("Y","N") or VALUES(0,1,2,3,4,5)

[NOT] RANGE(low-value high-value) the user's entry must be between the low value and high
value (inclusive) indicated in the rule. Ex. RANGE("A" "Z") or RANGE(1000 9999)

CHECK(len) Forces the user to enter a value matching the full length of the variable.

CHECK(uc) Translates any lowercase input to uppercase.

SPCVAL(value,value,value,...) Specify a list of special values separated by commas. If a value
that is entered matches one of these special values, no additional checking is done on the entry. It
is especially useful in the case of passing *ALL to a Parameter on a command instead of using
*ALL/*OMIT to remove text from the SQL statement. This integrity check would most likely
be used in a script variable.

SST(*LDA, mmmm, nnnn) Write the prompted value to the local data area (LDA) where mmmm
is the starting position and nnnn is the length of the substring. Values in the LDA can be
retrieved by high level programs or a calculation in Sequel Report Writer.

PASSWORD This integrity test hides the prompted value as it is entered. This is especially use-
ful when prompting for a user password from the browser using the Sequel Web Interface prod-
uct.

Variable Views 4-9

Extended help

Up to 256 characters of "extended" help text can be used to add additional definition for the vari-
able. When the prompt appears, a message indicating extended help text is available will be dis-
played at the bottom of the screen. If the user positions the cursor to the field and presses the F1
key, a window will appear showing the extended help text.

Using the SETVAR Parameter

The variable definitions in the GENERIC view on page 4-5 make it flexible enough to retrieve
information from any file (and member) within the database. If no values are supplied by the
SETVAR Parameter, all three variables can be set through the prompt interface. Variables that
are provided by the SETVAR Parameter will not be prompted. If all variables are supplied, the
runtime prompt will not appear.

For example, with the SEQUELEX library on your library list, type:

DISPLAY VIEW(GENERIC) +
 SETVAR((&lib sequelex) (&file custmast) (&mbr))

The view will execute and records in the SEQUELEX/CUSTMAST file will be displayed with-
out delay. Note from the example above that variables can be specified within the SETVAR list
in any order. The order of variables within the view is independent of the order you choose to
specify them with the SETVAR list.

The default value for a variable can be selected by specifying the variable's name but omitting
the value from the SETVAR specification or by using the '*N' placeholder in place of the value.
The default value for the &MBR variable will be used when the view is run. It could also have
been chosen by specifying (&MBR *N) within the list.

If one or more of the view's variables are not specified by the SETVAR Parameter, the view's
runtime prompt will be displayed. The user will be able to enter values for all unspecified vari-
ables before the query proceeds. For example, the command:

DISPLAY VIEW(GENERIC) SETVAR((&lib sequelex))

will result in the prompt display below.

4-10 Sequel 11 Programmer’s Guide - Sequel Programming

If the command above is run using the SEQUELEX/GENERIC view, the runtime prompt will
allow the file and member name's to be specified, but not the library name. Only files in the
SEQUELEX library will be able to be queried.

The library name field is pre-filled with the value from the SETVAR Parameter and cannot be
changed by the user. The other variables (file, member) can be entered in the usual fashion.

Programmed use of SETVAR
An especially useful application for the SETVAR Parameter is its ability to be used programati-
cally. As an alternative to the programming techniques described beginning on page 4-17, you
may prefer to create variable views and use the SETVAR Parameter to substitute values when
the view is run.

The CL program below will run the GENERIC view and display the information in a file having
the user's name.

100 PGM
200 DCL &USER *CHAR 10
300 RTVJOBA USER(&USER)
400 DISPLAY VIEW(GENERIC) +
500 SETVAR((&FILE &USER) (&LIB 'USERFILES') (&MBR *N))
600 ENDPGM

The user's name is retrieved from the system in statement 3.00 and placed into the CL variable
&USER. This value is used on lines 4.00 and 5.00 in the DISPLAY command.

The SETVAR Parameter is used to set all three variables in the view. Since no variables are left
out, the prompt display will not appear for the user. If one or more of the variables had not been
specified, the prompt would appear and the user would be required to enter the missing informa-
tion. The prompt display will not allow the user to change any variables that had been set
through the SETVAR specification.

Variable values in the SETVAR can be specified in three ways:

• as CL variables (ex. &USER)
• as literals (ex. 'USERFILES')
• as default values (ex. *N)

If CL variables are supplied, they must be defined as character variables. Character CL vari-
ables must always be used, regardless of the type of variable (NAME, QSTRING, NUMBER,
EXPR) being set in the view.

Literal values should always be quoted as on line 5.00 in the example. The value may also need
to be surrounded by double quotes (e.g. ' "USERFILES" '). The requirement for double quota-
tion marks depends on the variable's use within the statement. In many cases you can eliminate
the double quote requirement by using a variable type of QSTRING. When you do, Sequel will
automatically surround the value with double quotes if they were not provided.

Variable Views 4-11

ORDERSUMP Example

The ORDERSUMP view in the SEQUELEX library can be used to demonstrate Sequel's run-
time prompting capabilities. This section uses the view as an example to provide an overview of
the prompting facility.

Though the ORDERSUMP view has been "engineered" to be a fairly interesting example, it is
by no means unique. The invention and application of runtime prompted views is largely a mat-
ter of your own creativity and resourcefulness. A small investment can yield some impressive
results!

The view was created with the command shown below.

CRTVIEW VIEW(SEQUELEX/ORDERSUMP)
 TEXT('Order summary - header info for each order by cust')
 OPTIMIZE(*FIRSTIO) ALWCPY(*YES) MSG(*YES) UNIQUEKEY(*NONE)
 JTYPE(*INNER) JORDER(*ANY) IGNDECERR(*NO) ACCPLN(*NO)
 DTSTYLE(*JOB *N *JOB *N)
 SQL('
 SELECT cusno.ordhead, cname.custmast,
 coomn*10000+coody*100+cooyr LEN(6,0) EDTCDE(Y)
 COLHDG("Order" "Date") NAME(ordate),
 ordno.ordhead, cuspo.ordhead, shipv.ordhead,
 trmds.ordhead, ostat.ordhead, ortot.ordhead,
 otype.ordhead, curln.ordhead, orval.ordhead,
 orwgt.ordhead
 WDATA(coocc*1000000+cooyr*10000+coomn*100+coody)
 NAME(ordate2) LEN(8,0)
 FROM custmast, ordhead
 JOIN BY cusno.1=cusno.2
 WHERE (cusno.1=&cusno OR cname.1 &test &name) AND
 ordate2>&lowdate
 ORDER BY &order')
 VARSPECS(
 (&CUSNO NUMBER 6 0 'Matching customer number' '0')
 (&NAME QSTRING 25 *N 'OR customer name' '"???"')
 (&TEST EXPR 8 *N ' tested with' 'CONTAINS'
 'VALUES("CONTAINS", "LIKE", "=", "<", ">", "<>", "<=", ">=")')
 (&LOWDATE NUMBER 6 0 'Beginning date (YMD)' '870101'
 'CHECK(len)' 'AND COOYR*10000+Coomn*100+coody>')
 (&ORDER NAME 10 *N 'Ordering field' 'ORDNO'
 'VALUES(cname, ordno, cuspo, ordate, shipv, ostat)'
 'ORDER BY'))

Note the use of the VARSPECS Parameter to define the substitution variables that are used in the
WHERE and ORDER BY clauses of the SQL statement.

The view contains references to five variables. These variables provide an extraordinary amount
of flexibility for the user, allowing comparisons to be made against customer number, name, and
order date and providing a wide range of ordering options for the retrieved data.

&cusno is a numeric value up to six digits long. It is used in the WHERE clause in a com-
parison with the customer number field from the CUSTMAST file. The initial (default)
value that will be shown on the runtime prompt is zero.

&name is a quoted string up to 25 characters long. It too is used in the WHERE clause and is
combined with the &test variable to create a test involving the customer name field (cname).
Because it has been defined as a quoted string (QSTRING) variable, Sequel will automati-
cally provide quotes for it if the value entered into the prompt is not quoted. A default value
of "???" is specified for the variable.

4-12 Sequel 11 Programmer’s Guide - Sequel Programming

&test is used in the comparison involving the customer name field (cname) and the value
supplied by the &name variable. The value for this variable determines what kind of com-
parison will be performed. The initial (default) value for the variable is CONTAINS. Seven
other values are allowed for the variable (LIKE, =, <, >, <>, <=, and >=)

&lowdate is a numeric value that will be used in a test involving the order date (coomn,
coody, cooyr) fields. A default value of 870101 is defined for the field. If the *OMIT or
*ALL special value is entered for its value, the entire comparison will be eliminated from
the SQL statement. The CHECK(len) integrity test forces the user's entry to be the full 6 dig-
its defined for the variable.

&order allows a field name (cname, ordno, cuspo, etc.) to be entered and placed into the
ORDER BY clause. If *OMIT or *ALL is typed in place of a name, the ORDER BY clause
will be dropped from the statement.

Using the view

The variable definitions in this view make it extremely flexible. It can be run in a variety of
ways, using any of the valid Sequel data retrieval commands. If no values are supplied by the
SETVAR Parameter, all five variables can be set through the prompt interface. To see how, put
SEQUELEX on your library list, and type:

DISPLAY VIEW(ORDERSUMP)

You can experiment with variable values and their effect on the SQL statement by entering a
value and pressing F23 to view the statement, then pressing F23 again to return to the prompt
display. For instance, after typing NBO into the customer name prompt and *OMIT or *ALL
into the ordering prompt you should see the following display when you press F23.

Notice that the variable names in the WHERE clause have been replaced with the values you
have entered. The ORDER BY clause is missing entirely. Press F11 to view the statement as it
was entered, including the variable names. Press F11 again to display the substituted statement
shown above. After you have examined the statement, press F23 to return to the prompt.

Variable Views 4-13

The ORDERSUMP view can be used to perform several different types of retrievals. Just a few
of the many prompt values that can be entered and the effects that they have on the view are
listed below. Try entering them and using F23 to view the substituted statement. Use F9 to run
some of the statements to see the complete result.

Value 100200 can be typed into the customer number prompt in order to select only orders
for the 'NBCO Corporation Inc.' customer. Any specific customer's orders can be
chosen simply by typing their customer number into the first prompt.

NBO can be typed (quoted or not) into the customer name prompt in order to select only
orders for customers having the letters NBO in their name.

Both the customer number and the customer name prompts can be filled in to select orders
by customer number and name. Use customer number 123321 and name "Corp" for
an example.

The CONTAINS test can be switched to > and a blank can be typed for the customer name in
order to select all orders for all customers. Alternatively, any character (or series of
characters) can be used in a greater than (">") test to begin the customer list at a cer-
tain point alphabetically. This list will be most useful when CNAME is chosen for
the ordering field.

The LIKE operator can be used to select customer names matching a particular pattern.
Specify customer name "N*" and test LIKE to choose only customers beginning
with the letter 'N'.

Orders placed after a specific date can be chosen by entering the date into the order date
prompt. (Try values between 19998/0/01 and 1999/08/31.)

*OMIT or *ALL can be entered as a value for the order date. This eliminates order date
checking entirely.

The retrieved records can be sorted in order by customer name, order number, order date,
purchase order number, etc., by specifying the appropriate field name in the order-
ing prompt at the bottom of the display.

*OMIT or *ALL can be specified for an ordering field to eliminate data ordering com-
pletely, improving the performance of the request.

You can also use different Sequel commands to invoke the prompter. Try using PRINT (option
6) instead of the DISPLAY (option 5) command and submitting the request to the batch subsys-
tem via F14. (Remember to verify that the job description (F18) is appropriate.) You may also
want to try using the EXECUTE command (option 9) to place the retrieved records into an out-
put file.

Experiment with the effect of the SETVAR Parameter to pass values to the view without user
involvement. For instance, you can run the view without an intervening prompt by using the
command:

DISPLAY VIEW(ORDERSUMP) SETVAR((&cusno) (&name '"Corp"')
 (&test) (&lowdate *n) (&order cname))

4-14 Sequel 11 Programmer’s Guide - Sequel Programming

(Specifying simply the variable's name or using the special *N value in place of an actual value
indicates that you do not want to pass a value for the indicated element and that the variable's
default value should be used instead.)

You can prompt some of the variables and protect others from entry by supplying only the ones
you do not want the user to change through the SETVAR Parameter. You can force the view to
include only orders after January 15 by making a request like:

DISPLAY VIEW(ORDERSUMP) SETVAR((&lowdate 890115))

The prompt will display and you will be able to enter values for all of the variables except the
order date. The order date is set to the value specified by the SETVAR Parameter and cannot be
changed.

Programmed use of ORDERSUMP
Suppose that you wanted to use the ORDERSUMP view within a CL program and supply vari-
able values automatically, without user intervention. You may want to create a program like the
one below. It receives the Parameter values from another program (perhaps an RPG or COBOL
program that has performed some prior processing task) and uses the EXECUTE command to
direct the output to a document in a PC folder.

100 PGM (&CUSNO &NAME &LOWDATE)
200 DCL &CUSNO *DEC (6 0)
201 DCL &NAME *CHAR (25)
203 DCL &LOWDATE *DEC (6 0)
204
205 DCL &CUSNOCH *CHAR (6)
206 DCL &START *CHAR (6)
207
208 CHGVAR &CUSNOCH &CUSNO
209 CHGVAR &START &LOWDATE
300 EXECUTE VIEW(ORDERSUMP) SETVAR((&CUSNO &CUSNOCH) (&NAME &NAME) +
400 (&TEST 'LIKE') (&LOWDATE &START) +
401 (&ORDER '*OMIT')) +
402 TOFLR(MGRPT) TODOC(ORDERSUM.DBF) PCFMT(*DELIMITED)
500 ENDPGM

The customer number, name, and starting order date are received as Parameters when the pro-
gram is called. Each is received in its "natural" type; the customer number and date are in packed
decimal format, the name is character.

Because the SETVAR Parameter requires character values, the packed numeric Parameters
passed to the program must be converted to character form before they can be used. The CHG-
VAR statements at lines 2.08 and 2.09 do this. The result variables (&CUSNOCH and &START)
will have a character format (zoned numeric) and a value equal to the numeric value received by
the program.

The EXECUTE command at line 3.00 will substitute the received values for the customer num-
ber, name and starting order date. It will always perform a LIKE test against the received cus-
tomer name. It will also always omit the ordering criteria. Note that the literal values LIKE and
*OMIT are quoted in the SETVAR Parameter.

Variable Views 4-15

Runtime Prompt API

The Sequel kernel includes a callable program that can be used to show the runtime prompt to
the user and return the substituted SQL statement and the entered values to the calling program.
The user program can run the view, perform additional edit checking on the Parameters, pass
them to other programs, and use them to run views via the SETVAR Parameter.

Sample source code for using this API can be found in member RUNTIME5 of the file
SEQUELEX/SOURCE.

The API program name is SEQRTRNP. It exchanges up to 55 Parameters with its caller. The first
5 Parameters are required, additional Parameters are optional.

If more Parameters are provided on the CALL than defined by the view, the extra input Parame-
ters will not be changed by the API. If fewer Parameters are provided on the CALL than defined
by the view, the remaining Parameters defined in the view will not be returned to the program.

Although 50 runtime variables can be supplied on the CRTVIEW command, the CL CALL com-
mand is limited to 40 Parameters, so the API can only return the first 35 defined variables to a
CL program. If you need to access additional Parameter values, use a compiled CALL (RPG,
COBOL, etc.) to run the API.

Parameter descriptions
View name: Name of Sequel view to prompt. The view name is supplied in a 20 byte field
with the view name in positions 1 10 and the view library in positions 11 20.

Length of SQL receiver field:This field controls the maximum number of characters the API
will use when returning the substituted Sequel statement to the calling program. The API gener-
ates the substituted Sequel statement by substituting the user entered values from the prompt
screen in place of the variables in the SQL statement.

Number of bytes available:The API returns the actual size of the substituted Sequel statement.

Parameter description Type Format
View name Input Char(20)
Length of SQL receiver Input Pkd(15,5)
Number of bytes available Output Pkd(15,5)
SQL receiver Output Char(*)
Preferred date/time style Input Char(50)
Receiver for Runtime Variable 1 (optional) Output Char(*)
Receiver for Runtime Variable 2 (optional) Output Char(*)
Receiver for Runtime Variable 3 (optional) Output Char(*)
. Output Char(*)
. Output Char(*)
. Output Char(*)
Receiver for Runtime Variable 50 (optional) Output Char(*)

4-16 Sequel 11 Programmer’s Guide - Sequel Programming

SQL receiver: The API will place the substituted Sequel statement in this field. If you don't
need the Sequel statement, you can pass a 1 character blank and set the length of SQL receiver
field to 1.

Preferred date/time style field:This field controls the entry format of date variables. The field
should be defined as a 50 byte character field. The date style contains four values that include:
date format, date separator, time format and time separator. It is best to declare a variable and set
the value for the date style on the DCL command.

Receivers for runtime variables:The variables you supply for these Parameters are assumed to be
long enough to receive the corresponding runtime prompt value. The minimum length is 5 to
allow for '*OMIT'. Values supplied by the user will be copied into the corresponding receiver
variables. Variables are returned in the same order in which they are prompted.

Program Created Statements and Views 4-17

Program Created Statements and Views

In some instances, Sequel's runtime prompting capabilities may not provide the level of flexibil-
ity that you require especially if your view is a complex one involving many conditional substi-
tutions. With CL and/or HLL programming techniques, you can write programs that assemble
any Sequel request into a view and then print, display, or send the results to an output file.

Generally, you will prefer to use control language (CL) programs to construct dynamic Sequel
requests. CL has good string handling features, offering several types of concatenation operators
in addition to a substring function. It also provides the easiest mechanism for executing com-
mands.

There are several strategies and techniques that can be used in creating runtime Sequel requests.
Only a few are shown below. They may be helpful as a guide as you construct your own applica-
tions and provide a starting point for your own designs.

In addition to the strategies described below, you should consider using variable views in your
CL programs. In many cases, a variable view will be able to meet your requirements. The SET-
VAR Parameter provides the easiest method of substituting values into a Sequel statement.

Creating Sequel Statements Using String Concatenation

You can use CL and HLL concatenation operators to construct the entire SQL statement from a
series of character strings. Some parts may be static and remain the same from one execution to
the next, other parts of the SQL statement might contain program variables which change based
on user or application inputs. The following example below shows an effective way to do this
using a control language program.

 .
 .
900 DCL &SQL *CHAR 500
 .
 .
2100 CHGVAR &SQL VALUE('Select cooyr*10000+coomn*100+coody +

 name(date) len(6,0) edtcde(y) colhdg("Order" "Date"), +
 prdno len(10), descp, ordno, +
 quano-quans colhdg("Pick" "Quantity") name(pick) +
 From ordline,partmast,ordhead +
 Join By prdno.1=prdno.2 and ordno.1=ordno.3 Where +
 pick>0 and date<' *CAT &YMDATE *CAT +
 'Order By date,prdno')

2200 PRINT SQL(&SQL) TEXT('Picking list as of' *CAT &YMDATE)
 .
 .

A CL variable (&SQL) will contain the Sequel statement. It should be declared long enough to
hold the complete SQL request. Placing the request into a variable rather than building the SQL
Parameter directly within the Sequel command makes debugging easier. You can use:

DSPPGMVAR '&SQL' LEN(500)

from an interactive debug session to see exactly what your SQL statement looks like before it is
passed to Sequel for execution.

4-18 Sequel 11 Programmer’s Guide - Sequel Programming

The CHGVAR command is used to construct the SQL statement using the concatenation opera-
tors. Variables are inserted in the CHGVAR statement in places where flexible criteria are
required. CHGVAR creates a character variable so numeric inputs must first be converted to
character variables before they can be placed into the statement.

Remember that in the final result, values will be substituted for the variable names and will
appear as literals in the SQL statement. This means that you must surround character strings
with a set of double quotation marks (") so that Sequel will perceive them as strings and not as
field names. The example below creates a SQL statement with selection criteria for a character
field (STATE) and a numeric field (AMTDU). It also changes the ordering of records in the view
by supplying the ordering field (&OFIELD)

 .
 .
2100 CHGVAR &SQL VALUE('Select * From custmast Where state="' *CAT &STVAR +

 *CAT '" and amtdu> ' *CAT &AMOUNTC *CAT ' Order by ' +
 *CAT &OFIELD)

2200 DISPLAY SQL(&SQL)
 .
 .

Your CL programs can contain quite complex logic and build radically different SQL statements.
It is relatively easy to present a display to the user and allow several selection inputs and then
build an SQL statement containing as many elements as requested from the display.

Using Existing Views as a Starting Point

Building Sequel statements through a series of concatenation operations can be a tedious pro-
gramming effort. Placing quotation marks in the correct sequence and in proper locations can be
confusing and difficult. You can often make the task easier by first creating a Sequel view that
contains a sample of the statement your program will run, then using CL programming to change
the statement rather than building it.

The PICKLIST view in the SEQUELEX library provides an example. The view shows the prod-
ucts needed by current orders. We want to create an application that prints the listing based on a
date provided by the user, without suffering through the tortures of concatenation programming.
The SQL statement for the view looks like this:

SELECT cooyr*10000+coomn*100+coody name(date) len(6,0)
 edtcde(y) colhdg("Order" "Date"),prdno len(10),descp,
 ordno,quano-quans colhdg("Pick" "Quantity") name(pick)

FROM ordline,partmast,ordhead
JOIN BY prdno.1=prdno.2 and ordno.1=ordno.3
WHERE pick>0 and date<890105
ORDER BY date,prdno

After you have created the view to be used as the reference view, use DSPVIEWD to determine
where the field(s) to be changed are located. The initial DSPVIEWD display shows the SQL
statement in a "formatted" fashion - phrases and fields are often put on separate lines to improve
readability. Press F11 to view the SQL string as it is stored in the user space. In our example, we
want to change only the date criteria in the WHERE clause.

Program Created Statements and Views 4-19

Once the CL program has acquired the date to be used (either using RTVJOBA or user input) it
need only retrieve the view definition and change those locations before executing the new state-
ment.

 .
 .
900 DCL &SQL *CHAR 500
 .
 .
2000 RTVVIEWD SEQUELEX/PICKLIST SQL(&SQL)
2100 CHGVAR %SUBSTRING(&SQL 344 6) &YMDATE
2200 PRINT SQL(&SQL) TEXT('Picking list as of' *CAT &YMDATE)
 .
 .

This can be an easy and effective way to simplify building a dynamic Sequel request. Although
simpler to program, this technique is more restrictive than the earlier example. Using this
method is less flexible than creating the complete statement since it allows only substitutions
into a SQL statement. Using simple substitutions you cannot make major modifications to the
structure of the SQL statement.

WARNING! This method also creates a dependency between the view and the CL program. The
program will not run if the view is destroyed since the SQL will not be able to be retrieved. If the
view changes (another field is added, other criteria are included, etc.) the CL program will not
work correctly until it is changed as well because the positions referenced by the program will be
incorrect.

The level of flexibility can be increased by using programming techniques that will "find" the
substitutions for you. By knowing the values in the Sequel view that need to be substituted and
using the QCLSCAN* program or HLL searching functions, you can create a program that auto-
matically locates the substitution locations.

 .
 .

900 DCL &SQL *CHAR 500
901 DCL &STRLEN *DEC (3 0) VALUE(500)
902 DCL &STRPOS *DEC (3 0) VALUE(1)
903 DCL &SEARCH *CHAR 6 VALUE('890105')
904 DCL &SRCHLN *DEC (3 0) VALUE(6)
905 DCL &XLATE *CHAR 1 VALUE('0')
906 DCL &TRIM *CHAR 1 VALUE(' ')
907 DCL &WILD *CHAR 1 VALUE('?')
908 DCL &LOC *DEC (3 0)

 .
 .

2000 RTVVIEWD SEQUELEX/PICKLIST SQL(&SQL)
2100 CALL QCLSCAN (&SQL &STRLEN &STRPOS &SEARCH &SRCHLN &XLATE &TRIM &WILD &LOC)
2200 CHGVAR %SUBSTRING(&SQL &LOC 6) &YMDATE
2300 PRINT SQL(&SQL) TEXT('Picking list as of' *CAT &YMDATE)

 .
 .

This program will locate the reference date (890105) and replace it with the date to be used
during each execution of the Sequel request. The call to QCLSCAN in statement 2100 returns
the starting location of the search argument in the variable &LOC. In our example, the result is
344. Now, if the view is changed so that spacing within the view is altered, the program will still
work correctly. The dependency has been reduced so that only the reference date must remain
constant.

4-20 Sequel 11 Programmer’s Guide - Sequel Programming

Multiple QCLSCAN requests can be made if there are several substitutions to be performed.
You may find it easier to place special substitution values in the view (11111, 222222, 33333,
etc.) to provide a measure of documentation and to make it easy for your program to locate them.

A Combined Approach

You can gain increased flexibility by combining the two approaches - using RTVVIEWD to
acquire the portions of the SQL statement that do not change from one execution to the next and
using concatenation operations to build the part of the SQL statement following the fixed por-
tions.

Execution Time Report Specification 4-21

Execution Time Report Specification

Altering the SQL statement on a report request can be just as effective and powerful as dynami-
cally creating and changing views. You can use the same techniques described above to supply
different SQL statements to the REPORT command and thereby alter the contents of a Sequel
report.

There are two important rules to remember when dynamically creating SQL statements for
Sequel reports.

Note: The SELECT clause used in the SQL statement of the REPORT command must include
all the fields used on the report and each field should have the same attributes as when the report
was originally designed.

Violating this rule might not prevent the report from executing. An inquiry message will appear
at the user's workstation (or system operator message queue) indicating that the format of the
view has changed. The user or operator must indicate whether the report should attempt to com-
plete, using the new attributes and substituting zeros and blanks for fields that are no longer sup-
plied by the view.

The ORDER BY clause can be changed by the REPORT request subject to some limitations.
You are allowed to run a report with different ordering fields only if the original fields are still
present in the ORDER BY and their sequence hasn't changed. Thus, you can add new fields to
the ORDER BY clause, but you cannot drop or rearrange the order of the current field list. Oth-
erwise, message RPT7011 will be signalled and the report will not run.

Passing values to the report

Non-database values that are determined when the report is executed rather than when it is
designed can be placed on the report using two different approaches. This gives you the ability to
increase the flexibility of the report without forcing you to build this flexibility into the view that
the report uses.

For instance, you can send a description of select/omit criteria into the report and either place the
description unchanged on the report, or break it apart using the substring (SUBSTR) function
available through report writer calculations.

Local Data Area
The @@LDA variable is set to the value of the local data area when the report begins its execu-
tion. Calculations in the report that refer to the @@LDA variable will access the current con-
tents of the local data area (in character form).

Title Parameter
The @@TITLE variable is received by the report at execution time if you specify a TITLE
Parameter on the REPORT command. This gives you an especially easy way to specify (short)
variable data.

4-22 Sequel 11 Programmer’s Guide - Sequel Programming

Submitting Requests

Submitting Sequel commands to a batch subsystem can be complicated due to the fact that the
request data (RQSDTA) Parameter on the submit job (SBMJOB) command is a character
Parameter, and must be enclosed in apostrophes (') and it may contain the SQL Parameter, which
is also a character Parameter, and must be enclosed in apostrophes. The CMD Parameter can be
used in place of RQSDTA to ease the problem somewhat, but the "quote problem" is often diffi-
cult to avoid entirely.

Submitting Sequel requests that do not specify SQL Parameters is simple and straightforward.
The following command produces the PRINT output for the CUSTLIST view.

SBMJOB SEQUELPRT CMD(PRINT VIEW(CUSTLIST.SEQUELEX))
 JOBD(SEQUEL/SEQUEL)

A similar request using the SQL Parameter would look more complex:

SBMJOB SEQUELPRT CMD(PRINT SQL('Select cusno,cname,cadd3,cstte
 from custmast.sequelex order by cname'))
 JOBD(SEQUEL/SEQUEL)

Avoid problems in submitting your requests by creating views where possible and submitting
jobs that reference the view, rather than attempting to submit a job that includes a SQL state-
ment. If you choose to use the SQL Parameter on your Sequel command, ensure that character
literals in expressions, COLHDG references, and in the WHERE/HAVING clauses are sur-
rounded by double quotation marks (") rather than apostrophes.

Restricting Sequel Requests to the Batch Environment

Sequel provides an easy way to restrict "batch" operations (such as sending query results to an
output file or the printer) to a batch subsystem. You may want to use the steps below to ensure
that Sequel users don't use valuable interactive resources for long running requests.

Although Sequel is shipped so that PRINT, REPORT, and EXECUTE requests can be run inter-
actively, you can restrict them to a batch only environment. Use the commands below to change
them so that they cannot be run interactively:

CHGCMD SEQUEL/PRINT ALLOW(*BREXX *BPGM *EXEC *BATCH)
CHGCMD SEQUEL/REPORT ALLOW(*BREXX *BPGM *EXEC *BATCH)
CHGCMD SEQUEL/EXECUTE ALLOW(*BREXX *BPGM *EXEC *BATCH)
CHGCMD SEQUEL/RUNSCRIPT ALLOW(*BREXX *BPGM *EXEC *BATCH)

If you want some users to be allowed to run the commands interactively while restricting other
users to batch execution, you can duplicate the commands to another library, make the changes,
and arrange users' library lists so that they run the command that is appropriate for them.

Once you have changed the PRINT, REPORT, and EXECUTE commands so that they cannot be
run interactively, users will not be able to run them through the "work with" displays or the user
interface or the command line. They will however still be able to submit them to the batch envi-
ronment using the F14=Submit and F15=Prompted Submit function keys.

Submitting Requests 4-23

Since users with access to the "restricted" commands will not be able to run them interactively,
you should also change the option definitions in their WRKSEQUEL option file so that the
BCHxxxx commands will be run instead of the restricted PRINT, REPORT, and EXECUTE
commands. Simply change the command definitions for the options 6=Print, 9=Outfile, and any
additional options that have been created so that they refer to the BCHxxxx commands rather
than their restricted counterparts. See Part 1 of the Sequel SQL Reference Guide for details
about changing option definitions.

Submitting Variable Views

If you restrict the PRINT, REPORT, EXECUTE, and RUNSCRIPT commands to a batch only
environment, users will not be able to use them to prompt and submit variable views (since run-
time prompting is an interactive process).

Sequel includes four additional commands that you can use to do this. The BCHPRINT,
BCHREPORT, BCHEXECUTE, and BCHSCRIPT commands will:

• automatically submit static views (and SQL statements) using the user's default job descrip-
tion

• provide the runtime prompt for variable views and allow users to press F14=Submit or
F15=Prompted Submit to send the request to the batch subsystem

The most effective way to use these commands is to use them in place of the PRINT, REPORT,
EXECUTE, and RUNSCRIPT commands in the "work with" option files. The BCHOPTFILE
member in the OPTFILE option file, uses all the batch commands. To change the option defini-
tions, use the procedures described in Part 1 of the Sequel SQL Reference Guide.

Because the WRKVIEW and WRKREPORT displays are not "driven" by the option file, the
6=Print, 9=Outfile, and 16=Run options will continue to try to run the commands interactively.
An error will occur unless the user presses F15 after selecting one of these options. Because of
this, you may want to have your users always work from the WRKSEQUEL display rather than
the WRKVIEW and WRKREPORT "menus". You can change the Sequel menu definition so
that options 2 and 3 run the WRKSEQUEL command instead of the WRKVIEW and
WRKREPORT commands. Refer to page 7-5 for additional information.

4-24 Sequel 11 Programmer’s Guide - Sequel Programming

Processing Query Data with HLL Programs

Sometimes, Sequel's data handling commands will be insufficient for the data manipulations
required by an application. You may want (or need) to use a combination of Sequel data requests
and high level language programming to accomplish your particular task.

You can use the Open Sequel File (OPNSQLF) command to request a particular set of data from
the system so that your program can read, print, or update the data directly. The OPNSQLF
(page 2-125) command is similar to the IBM Open Query File (OPNQRYF) command. It has the
same capabilities and many of the same limitations. Its main advantage is its English-like syntax
and consequent ease of use. Refer to the Control Language Programmer's Guide for complete
details of the OPNQRYF command.

OPNSQLF allows your HLL program to access query data directly. Standard language data
management facilities for reading, writing, updating and deleting records can be used for the
open SQL file (subject to certain limitations) just as they can for "regular" files.

The OPNSQLF command creates an open data path to the queried information. Your RPG,
COBOL, PL/I, or CL program indicates a view or an SQL statement and Sequel creates the path
to the data using OS/400 functions. Once the data path has been created, a HLL program then
"opens" it and performs input/output operations against it as it would any other file.

Using OPNSQLF requires both pre-execution and execution time steps. The pre-execution steps
need only be performed once. The execution time steps are completed each time the data is used.

Pre-Execution

Pre-execution or compiling operations are required prior to the actual execution of the data oper-
ation. The program that will use the data must be designed, created and compiled. The file
description must include the record length specification as well as a description of each field in
the record format. As with all files, the query data can be program described or externally
described.

Unless your request will acquire the entire format, the easiest course to follow is to allow Sequel
to create the file description itself. This can be accomplished by creating a view which specifies
the query to be performed during normal execution of the program. Once the view is created, use
it with the EXECUTE command and specify NBRRCDS(*NONE) to create an empty outfile.
The outfile can be used as the source for the external format definition in the compile step for the
program.

Once the program has been compiled, it can be executed using the query data. The execution
version of the query need not be exactly the same as the version used in creating the outfile.
Only the format (SELECT clause) of the query must be the same. All fields present in the origi-
nal outfile must be present in the execution time query, in order and with the same lengths origi-
nally described. The files used by the query, the selection criteria (WHERE clause), grouping
information (GROUP BY and HAVING) and the ordering (ORDER BY) can be altered from
one execution to the next.

Processing Query Data with HLL Programs 4-25

Execution

Once the HLL program that will access the data has been created, it can be run by performing a
few simple steps. The OPNSQLF command is required to indicate the query (view or SQL state-
ment) to be performed. The query processor will analyze the request and create the path to the
data.

In order for the HLL program to use the query data, it must perform a shared open of the file. A
shared open request causes the system to examine the job structure and to use an existing data
path if one exists. Use the CL command OVRDBF to indicate that a shared open should be per-
formed.

Note: The OVRDBF command must specify the file name used in the program as the FROM-
FILE Parameter, the first file in the FROM clause as the TOFILE Parameter, and
SHARE(*YES)

Usually a CL program will perform both the OPNSQLF and the OVRDBF commands prior to
calling the HLL program that will use the data. These commands can be executed via calls to
QCMDEXC or QCAEXEC from the HLL program itself, but the program must not attempt to
open the file prior to performing the two commands.

Once the program has completed, the data path must be closed. This can be accomplished by
using CLOF in the program that opened the data path, specifying the OPNID used in the
OPNSQLF command. The RCLRSC command will perform the same function and will close all
open files if more than one is being used

4-26 Sequel 11 Programmer’s Guide - Sequel Programming

Data Modification 5-1

Data Modification

This section of the manual will give you a further understanding of the data modification func-
tions supported by Sequel. It will describe Sequel's insert, update and delete capabilities. It will
also show you how to use Sequel in conjunction with commitment control.

The INSERT, UPDATE and DELETE commands let you modify database information with
unparalleled ease. Although they use the same basic SQL query statement that you are already
familiar with, there are minor differences in the syntax, and some additional considerations for
their use.

The UPDATE and DELETE commands require an "updateable" view of the underlying data.
This means that in addition to having the proper authority to the file, the SQL statement must
create a view that allows the operation. Grouping, union, and unique key queries cannot be used.
Except for these restrictions, virtually all other views (including join and subquery views) can be
used in update or delete operations.

This section will give some examples of using each of the commands.

5-2 Sequel 11 Programmer’s Guide - Data Modification

Commitment Control

One of the most advanced features of OS/400 is its "built in" database commitment control. Par-
adoxically, it is also one of its most under used. It gives you an easy way to ensure that all
changes to the data are complete and correct before they are irrevocable. It does this by "remem-
bering" your changes and giving the impression that they have been made yet not actually
applying them to the data until you give the final okay.

This facility is especially useful with a set processing system such as Sequel. Using commitment
control in combination with the UPDATE, INSERT and DELETE functions makes it easy for
you to review changes to the information after they have been made, and yet reserve the right to
refuse them if they are not right. It gives you the ability to go back and undo the changes.

Sequel is a powerful tool. It lets you make significant changes to your data easily. You should
always use commitment control when using the UPDATE, DELETE, or INSERT commands.
Commitment control gives you a single step recovery in the event that you make a mistake.

Starting commitment control

In order for commitment control to be able to reverse changes you make to the data, it must keep
a record of them. It keeps this record in a journal receiver. A journal receiver is similar to a file,
except that instead of containing database records with a single consistent format, it contains
journal entries. Each journal entry describes a change to one of the files that the journal is
attached to. The journal entry is simply the image of the database record either before or after the
record was changed. Using commitment control functions, any changes to a journaled file can be
easily "undone" simply by replacing the current record value with a previous one that was stored
in the journal receiver.

Using commitment control requires only two steps:
1. Issuing the begin commitment control command
2. Journaling the files to be controlled

First, your interactive session must be placed under commitment control. To do this, enter the
command:

STRCMTCTL LCKLVL(*CHG)

This will notify the operating system that you want to use the commitment control feature.
While the feature is now turned "on", commitment control protection is not yet guaranteed for all
data operations. The next step will do this.

Each file that you will be changing must be attached to a journal so that the changes you make
can be recorded in a receiver. In addition, all the files that are being used in a commitment step
must be journaled by the same journal. Your files may already be journaled. You can find out by
using the Display File Description (DSPFD) command.

Commitment Control 5-3

If the file(s) you want to use are not journaled to a receiver, you can do it with a few simple com-
mands. First, you need to create a journal and its corresponding journal receiver. You can create
objects into the SEQUELEX library using the commands:

CRTJRNRCV sequelex/sequelex

CRTJRN sequelex/sequelex JRNRCV(sequelex/sequelex)

If the journal and receiver have already been created, or you want to use a different journal/
receiver combination, you can skip the two commands listed above. You need to create the jour-
nal and receiver only once. They will exist until they are deleted. A journal and its receiver can
exist on your system even though they do not collect any information.

Although the journal has been created, it is not yet functioning. The final step in using commit-
ment control involves assigning the file(s) to the journal. Once this is done, all changes (inser-
tions, deletions and modifications) will be recorded in the journal receiver so that they can be
reversed. You can use your own journal if you wish, but the example below assumes that you
will use the one created above. To begin journaling, simply execute:

STRJRNPF FILE(sequelex/custmast) JRN(sequelex/sequelex)

Commitment control is now active and all changes made to the customer master file (CUST-
MAST) will not really be made until the system is told to COMMIT the changes to the database.
As you progress through your session, use the STRJRNPF command to journal the files you
wish to place under commitment control. Only files that are being journaled will be "under"
commitment control.

Only record oriented changes are covered by commitment control. Deleting the file and clearing
or removing the member cannot be reversed.

Using commitment control

The following example demonstrates the usefulness of commitment control. With both the
Sequel and SEQUELEX libraries on your library list, display all the records in the customer
master:

DISPLAY 'select * from custmast'

Now delete all the customers with a customer number in the range of 100,000 to 101,000 using:

DELETE 'from custmast where cusno between 100000 and 101000'

Sequel will notify you that 8 records have been deleted. Verify this by re executing the DIS-
PLAY command above. You will notice that the records really seem to have been deleted. Any
other users who access the file at this point will have the same impression.

At this point, if any system failure were to occur, the file would revert to its previous condition.
If you sign off, power down the system, pull the plug, etc., the records will come back. The
changes have not been committed to the system. Another way to undo the changes is to use the
ROLLBACK command. It reverses all changes that have been made since commitment control
was started; up to any previous commit command.

5-4 Sequel 11 Programmer’s Guide - Data Modification

Undo your changes by using the command:

ROLLBACK

Now use the DISPLAY command to view the contents of the file. All the records will be back in
their original form! You can continue this process of modifying, examining, and removing
changes until the COMMIT command is issued. It has no Parameters, so using it is as easy as
typing:

COMMIT

Once you use it, all changes are made permanent and are not reversible through the ROLL-
BACK command or a system failure.

Ending commitment control is as easy as starting it. All that is needed is to stop any journaling
you have begun for the files you are using, and to tell the system that you do not need the feature
any longer. Issue the two commands:

ENDJRNPF sequelex/custmast

ENDCMTCTL

The system returns your session to normal data control functions and any changes you make to
the customer master will be permanently applied as soon as they are made.

Note: Remember to use the ENDJRNPF command to stop the journaling of your files. Other-
wise, changes will continue to accumulate in the journal receiver.

Considering how easy it is to use, you will probably want to take advantage of the commitment
control facility for all of your Sequel data modifications!

Deleting Records 5-5

Deleting Records

The DELETE command uses a non SELECT form of the SQL query statement. The column
specifications provided by the SELECT clause are not necessary since no records are actually
retrieved by the DELETE command. All you need to specify on the SQL statement is the FROM
clause and the WHERE criteria that choose the records you want deleted.

The ORDER BY phrase can be used, but there is no benefit other than forcing a specific access
path to be used. In most cases, the query processor will choose the best method of implementing
your query. Specifying an ORDER BY clause will probably cause the DELETE to take longer
than it would if the ordering criteria were eliminated.

The query statement you use must create an updateable view. The following restrictions are the
result of this requirement:

• You may not use the GROUP BY or HAVING clauses or a view containing an aggregate
(column oriented) function.

• You cannot use a UNION specification
• If it does include an ORDER BY, the view must not use unique key ordering.

Your requests can include joining and subqueries. If your FROM clause contains more than one
file, only records in the first file referenced by your request can be deleted.

Like other Sequel commands, DELETE lets you specify a view name or an SQL statement. This
makes it easy to create and store a view which can be used as needed to delete records. You can
use the DISPLAY command to run the view and display the selected information prior to delet-
ing it.

DELETE is very powerful. You can delete all the records in a file, simply by omitting a WHERE
clause from the SQL statement. For instance,

DELETE 'from sequelex/custmast'

will clear the file just as surely as the Clear Physical File Member (CLRPFM) command. It will
take somewhat longer because it accesses each record in the file, but it has the same effect.

Note: You should always use commitment control in conjunction with the DELETE command.
Properly used, commitment control will let you delete records and then review the result with
DISPLAY, PRINT, or EXECUTE. You can then make the decision to apply the changes perma-
nently using COMMIT, or revoke the deletion via ROLLBACK.

Refer to the description of the DELETE command on page 2-59 for more information about its
use.

Simple record deletion
You can delete products in the part master that have zero values in the ISSUE field by issuing the
command:

DELETE 'from partmast where issue=0'

5-6 Sequel 11 Programmer’s Guide - Data Modification

You will see the normal status messages at the bottom of the display, and Sequel will inform you
of the number of records deleted.

The RUNTIME view in the SEQUELEX library selects Illinois customers with a positive
amount due value. You can see the customers that the view selects by using the DISPLAY com-
mand:

DISPLAY VIEW(sequelex/runtime)

Deleting the records included in the view is as easy as specifying the command:

DELETE VIEW(sequelex/runtime)

Join queries and Subqueries
Using Sequel, you can delete records in one file based on values in another. Sequel lets you
delete rows using a statement that includes join or subquery specifications. You can use
DELETE to remove records that satisfy inner, only default, or partial outer joining criteria. In
many cases, there is more than one way to state a given request. Whether you phrase these que-
ries using joining or subquery statements is up to you.

Note: If you use a join statement or view, you are only allowed to delete records from the first
file listed in the first FROM clause. Other files referenced by the view are not deleteable.

The two statements below are equivalent. They both delete all the customers having no current
orders. They do it by selecting CUSTMAST records that have no matching customer number in
the ORDHEAD file.

DELETE 'FROM custmast, ordhead
 ONLY DEFAULT JOIN cusno.1=cusno.2'

DELETE 'FROM custmast
 WHERE cusno NOT IN (SELECT cusno FROM ordhead)

Although you can use joining and subquery statements in a DELETE operation, the file you
want to delete records from can be used only once in the entire statement. You cannot, for exam-
ple, delete records from a file based on the results of a join to itself, or a grouping operation over
the same file.

Because all views must be updateable, you cannot delete records that are created through a
grouping operation. You can, however, delete rows based on the results of a grouping operation.
To do it, you must create a subquery that does the grouping.

Consider an example where we use Sequel to delete orders that are 90% (or more) complete by
weight. The total order weight is contained in the ORWGT field in the order header file. We can
find how much of the total order weight has been shipped by multiplying each line's quantity
shipped value (QUANS) by its item weight (UNWGT) and accumulating the results for the
order. Once that has been done, the comparison is easy. The statement below will delete the
records as needed:

Deleting Records 5-7

DELETE 'FROM ordhead hdr
 WHERE ORWGT*0.9 <
 (SELECT SUM(quans*unwgt)
 FROM ordline line
 WHERE hdr.ordno=line.ordno)

You can interpret the query as follows:

• For each record in the order header file

multiply the order weight by 0.9 to find the "90% complete" threshold

perform a grouping query on the order line file using only records in the same order (a
matching order number)

accumulate the total weight of shipped product by multiplying each line's quantity
shipped by the product's weight

• Delete the record if the threshold value is less than the accumulated shipped weight.

Remote Database Considerations

In Sequel version R10M15, SERVER and SYNTAX parameters were added to the DELETE
commands for remote server data manipulation.

These parameters allow for DELETE operations against tables (files) on remote database servers
running SQL Server, MySQL, and Oracle. The parameters function in a similar fashion as with
other Sequel data retrieval and creation commands like DISPLAY and EXECUTE. Different
combinations of SERVER and SYNTAX values are used depending on the SQL syntax of the
view or SQL referenced by DELETE command.

The following are some points to consider when using DELETE against a remote database:

• For *ISERIES connections using *LOCAL or *LOCALSYS, the DELETE target file must
be journaled. For more information on creating and using journals, see the Commitment
Control section starting on page 5-2.

• For non-System i remote connections (such as SQL Server, Oracle, and MySQL), syntax
*SEQUEL is not supported. The VIEW or SQL must be written in the syntax of the target
database.

• The SQL or VIEW used by the DELETE command cannot contain joined files. You can
only specify one file in the FROM clause when a SERVER value other than *SEQUEL is
specified.

5-8 Sequel 11 Programmer’s Guide - Data Modification

Changing Records

The UPDATE command makes it easy to change information in a pre-existing view without re-
formulating the query to include only the fields which will be changed. The complete descrip-
tion of the UPDATE command can found on page 2-204.

UPDATE can be especially useful in changing records that have been incorrectly updated by a
high level language program. Instead of using the Data File Utility (DFU) to change the records,
or creating a special "fix" program to correct a problem, Sequel can perform the same task with
less effort.

The UPDATE command uses the same non SELECT form of the SQL query statement that
DELETE uses. A separate Parameter provides the names of the fields to be changed and the val-
ues they receive. The SQL statement specifies only the FROM clause and the WHERE criteria
that choose the records you want updated.

The query statement you use must create an updateable view. UPDATE has the following restric-
tions:

• The ORDER BY clause will be ignored during processing. There for unique key will be
ignored.

• You may not use the GROUP BY or HAVING clauses, or a view that uses a column func-
tion.

• You cannot use a UNION specification.

Your requests can include joining and subqueries. If your FROM clause contains more than one
file, only records in the first file listed can be updated.

Simple update
You can use UPDATE to quickly correct any number of records that have incorrect field values.
For example, you could update the customer master file to correct a problem with lower case
state codes by issuing the command:

UPDATE SET((cstte '"IL"'))
 SQL('FROM custmast WHERE cstte="il"')

Using the UPDATE command to change records is as simple as indicating which records need to
be modified and supplying the new field values the records should acquire. Only users with
update authority to the data file, and with operational authority to the UPDATE command will
be allowed to execute the function.

UPDATE SET((issue 100) (recpt 150))
 SQL('From partmast where prdno="BMX800"')

Suppose we need to change the state code (character) from "NB" to "NE", or reset the postal zip
code (numeric) for a set of customers from 60609 to 60659.

Changing Records 5-9

The following two UPDATE statements show how.

UPDATE ((cstte '"NE"')) 'From custmast where cstte="NB"'

UPDATE ((zip 60659)) 'From address where zip=60609'

Character values will be left aligned and extended with blanks or truncated on the right in order
to fit the receiving field. They must be surrounded by quotation marks (") to distinguish them
from database field names.

UPDATE can also be used to assign expression values to a field. Numeric expressions are evalu-
ated with (31,9) precision. For instance, incrementing the list price (LSTPC) field by 10% is as
easy as:

UPDATE ((lstpc 'lstpc*1.1')) 'From sequelex/partmast'

When a character literal or an expression is employed in the SET Parameter, OS/400 demands
that it must be enclosed in apostrophes (single quotation marks) as indicated above. Surrounding
numeric values with apostrophes is optional.

Join queries and Subqueries
Using Sequel, you can update records in one file based on values in another. Sequel lets you
update rows using a statement that includes join or subquery specifications. You can use
UPDATE to change records that are returned by inner, only default, or partial outer joining crite-
ria. In many cases, there is more than one way to state a given request. Whether you phrase these
queries using joining or subquery statements is up to you.

Note: If you use a join statement or view, you are only allowed to delete records from the first
file listed in the first FROM clause. Other files referenced by the view are not updateable.

For instance, Sequel can be used to make a 10% raise to all product prices that have fewer than
20 current orders for them. A statement like the one below would do the trick.

UPDATE SET((lstpc 'lstpc*1.10'))
 SQL('FROM partmast part
 WHERE 20 > (SELECT COUNT(*) FROM ordline line
 WHERE part.prdno=line.prdno)')

Each record in the partmast file will be checked against the result of the subquery. The subquery
finds the number of ordline records with a matching part number. If the result of the subquery
(the number of lines for the part) is less than 20, the part record is selected by the query and
updated; raising its list price by 10%.

As another example, consider an UPDATE request to zero the OROPN value in the customer
master for each customer without corresponding records in the order file:

UPDATE SET((oropn 0))
 SQL('FROM custmast,ordhead
 ONLY DEFAULT JOIN cusno.1=cusno.2')

5-10 Sequel 11 Programmer’s Guide - Data Modification

Remote Database Considerations

In Sequel version R10M15, SERVER and SYNTAX parameters were added to the UPDATE
command for remote server data manipulation.

These parameters allow for UPDATE operations against tables (files) on remote database servers
running SQL Server, MySQL, and Oracle. The parameters function in a similar fashion as with
other Sequel data retrieval and creation commands like DISPLAY and EXECUTE. Different
combinations of SERVER and SYNTAX values are used depending on the SQL syntax of the
view or SQL referenced by UPDATE command.

The following are some points to consider when using UPDATE against a remote database:

• For *ISERIES connections using *LOCAL or *LOCALSYS, the UPDATE target file must
be journaled. For more information on creating and using journals, see the Commitment
Control section starting on page 5-2.

• For non-System i remote connections (such as SQL Server, Oracle, and MySQL), syntax
*SEQUEL is not supported. The VIEW or SQL must be written in the syntax of the target
database.

• You cannot UPDATE across systems—meaning you cannot UPDATE data on system A
with data from system B.

• The SQL or VIEW used by the UPDATE command cannot contain joined files. You can
only specify one file in the FROM clause when a SERVER value other than *SEQUEL is
specified.

• For the SET parameter of the UPDATE command (page 2-204), all character strings must be
surrounded by triple single-quotes like so: SET((FLD1 '''new value'''))

Improve Performance on the System i
You can improve performance on the local System i, if you override existing Sequel views to run
as *LOCALSYS. For example:

UPDATE SET((CUSNO 100501)) SQL('from custlist where cusno=100500')

Runs using the older Classic Query Engine (CQE), but:

UPDATE SET((CUSNO 100501)) SQL('from custlist where cusno=100500')
SERVER(*LOCALSYS) SYNTAX(*SEQUEL)

runs using the new SQL Query Engine (SQE) of the query processor. For views that update large
numbers of records the performance difference can be significant.

Creating Records 5-11

Creating Records

The INSERT command is a simple way to introduce new records into a file. INSERT is espe-
cially useful for merging data from one or more files into another. It is different from the EXE-
CUTE command in that it does not require an exact match between the length and data types of
source and target values. INSERT will perform the necessary data mapping so that field values
are correctly placed into the new records.

Only users with *ADD data rights to the file and with operational authority to the INSERT com-
mand will be allowed to execute the function. Refer to page 2-114 for additional details about
the INSERT command.

Using the INSERT function requires you to identify the file that is to receive the new records,
the field(s) you will be placing values into, and the set(s) of values you will insert. You can cre-
ate a single record simply by specifying a set of constant values. A set of records can be inserted
by using an SQL query statement or a Sequel view to synthesize information from existing files.

The strength of the INSERT function lies in its ability to perform data conversions between
source and target fields. Sequel can convert character data to numeric format and vice verse. In
addition, source values which have different lengths than their targets will be adjusted accord-
ingly. Numeric data will be decimal aligned. Character data will be left justified and extended
with blanks or truncated on the right.

It is possible that the source record(s) may contain values that cannot be placed (mapped) into
their target field locations. If this occurs, Sequel will issue a conversion error message indicating
that the target field cannot receive the source value. The source record will be skipped, the target
record corresponding to the source values will not be inserted, and the query will continue in an
attempt to process the next set of values.

Single record insertion
Inserting a single record into a file is simple. To create another record in the TRIANGLES file,
execute:

INSERT INTO(SEQUELEX/TRIANGLES) FIELDS(LEG1 LEG2) VALUES(5 2)

One record will be inserted into the file, and it will have values 5 and 2 for fields LEG1 and
LEG2 respectively. Since the file has only two fields and we are supplying values for both of
them, we are not strictly required to enter their names. We could allow the FIELDS keyword to
default to *ALL and have the values applied to the record's fields in order. Although this is a
valid use of the command, it is somewhat risky since it depends on an accurate understanding of
the order of the fields within the records. A more direct approach, like the one above, eliminates
the possibility that values can be assigned to the wrong fields.

Multiple record insertion
Inserting a series of records into a file requires use of an SQL query statement. A Sequel view
supplies one or more records of information. The columns in the view are related to fields in the
file through the FIELDS keyword of the INSERT command.

For example, assume we have two files of name and address information and we wish to merge
them together. The copy file (CPYF) command will not work because fields in the two files have

5-12 Sequel 11 Programmer’s Guide - Data Modification

different names and attributes. Sequel is the only alternative to creating a special program to per-
form the task.

INSERT INTO(SEQUELEX/CUSTMAST)
 FIELDS(cname cadd1 cadd2 city cstte czip cphon)
 SQL('Select name,addr1,addr2,city,state,zip,phone
 From sequelex/address')

There must be a one to one correspondence between the fields in the FIELDS list and the col-
umns in the Sequel view. In our example above, fields with different attributes will be converted
to the target field type. Alphanumeric fields will be extended with blanks or truncated as neces-
sary. If the ZIP field is numeric in the ADDRESS file and character in the CUSTMAST file, it
will be placed in the leftmost positions of the character field. Leading zeros will be placed as
necessary so that all positions of the numeric field are represented.

The view or SQL statement may include a join or subquery reference. It may also include any
grouping, union, or ordering that is required. Since the view is used for read only access, none of
the "updateable view" requirements of the DELETE or UPDATE command apply.

Remote Database Considerations

In Sequel version R10M15, SERVER and SYNTAX parameters were added to the INSERT
command for remote server data manipulation.

These parameters allow for INSERT operations against tables (files) on remote database servers
running SQL Server, MySQL, and Oracle. The parameters function in a similar fashion as with
other Sequel data retrieval and creation commands like DISPLAY and EXECUTE. Different
combinations of SERVER and SYNTAX values are used depending on the SQL syntax of the
view or SQL referenced by INSERT command.

The following are some points to consider when using INSERT against a remote database:

• For *ISERIES connections using *LOCAL or *LOCALSYS, the INSERT target file must
be journaled. For more information on creating and using journals, see the Commitment
Control section starting on page 5-2.

• For non-System i remote connections (such as SQL Server, Oracle, and MySQL), syntax
*SEQUEL is not supported. The VIEW or SQL must be written in the syntax of the target
database.

• You cannot INSERT across systems—meaning you cannot INSERT data on system A with
data from system B.

• The SQL or VIEW used by the INSERT command cannot contain joined files. You can only
specify one file in the FROM clause when a SERVER value other than *SEQUEL is speci-
fied.

• For the INTO or INTOTABLE parameters of the INSERT command (page 2-115), the value
specified must match the case (upper vs. lower) of the target file as defined on the remote
database. If the target file name is lower case, the target file name must be enclosed in single
quotes like so: INTO('dbo.cusno_work')

• For the FIELDS parameter of the INSERT command (page 2-116), the value specified must
match the case (upper vs. lower) of the target field as defined on the remote database.

Creating Records 5-13

• Any field in the target table (file) that is not defined as null capable and does not have a
default value, must be specified in the FIELDS parameter along with its corresponding
default value in the VALUES parameter.

• For the VALUES parameter of the INSERT command (page 2-116), all character strings
must be surrounded by triple single-quotes like so: VALUES('''new value''')

Improve Performance on the System i
You can improve performance on the local System i, if you override existing Sequel views to run
as *LOCALSYS. For example:

INSERT INTO(CUSNOCNAME) VIEW(SEQUELEX/SEQCSNM200)

Runs using the older Classic Query Engine (CQE), but:

INSERT INTO(CUSNOCNAME) VIEW(SEQUELEX/SEQCSNM200) SERVER(*LOCALSYS)

runs using the new SQL Query Engine (SQE) of the query processor. For views that update large
numbers of records the performance difference can be significant.

5-14 Sequel 11 Programmer’s Guide - Data Modification

Performance 6-1

Performance

The performance of Sequel queries is a difficult and complex issue. Problems can be caused by a
variety of factors, not the least of which is the highly subjective nature of "good" performance.
Because its definition varies so widely, acceptable performance to one person may be totally
unacceptable to another. A given query may even be perceived as performing quite differently
on separate occasions simply because of psychological shifts in the mind of the observer. Aside
from this very basic problem, there are several elements to consider when discussing perfor-
mance.

Data management and manipulation are input/output intensive by their very nature. Demands on
the processing capabilities of the computer are usually limited, although they increase with the
complexity of data mapping, translation, and calculations performed by the query. As a result,
query performance is related more to the amount of disk accessing that must take place than the
amount of calculating required by the view.

Sequel relies upon internal data management functions for execution of each request. The
sophisticated OS/400 query processor performs virtually all of the work in accessing, acquiring,
and presenting the data to the user. It is an exceptionally intelligent set of programs and does its
best to make correct assumptions about the data it is accessing.

This section may give you some background on the basic aspects of Sequel performance. An
IBM publication, Structured Query Language/400: A Guide For Implementation (GG24-3321),
provides an excellent discussion with tips and techniques for improving the performance of your
queries. If performance is an issue, chapters 7 and 8 in this "red book" guide should be of consid-
erable assistance.

The Sequel auditing module can also help you find and correct performance bottlenecks associ-
ated with the views and reports that run on your system. By providing details about the indexes
that are being created and the CPU and I/O activity associated with Sequel requests, the auditor
can give you important clues for optimizing performance.

Classic Query vs. SQL Query Engine

Since OS/400 V5R2, IBM has provided two query engines for running queries. The Classic
Query Engine (CQE) runs requests from the non-SQL interfaces: OPNQRYF, QUERY/400 and
the QQQQry API which is utilized by our Sequel product. The CQE was built originally on the
S/38 and has been updated throughout the AS/400, iSeries and i5 life cycle. IBM has indicated
that there will be no future enhancements for the CQE. The advantage of using the CQE is the
support it provides for non-SQL features such as multi-member and multi-format files.

The "new" SQE runs requests from SQL based interfaces such as SQL/400, CLI and JDBC and
is built on a platform that is consistent across DB2. The advantage of using the SQE is the con-
sistency of native SQL across all DB2 platforms. SQE also offers generally better query perfor-
mance than the CQE.

Because the SQE usually offers better performance than the CQE, customers often question how
much benefit they can gain by modifying their Sequel views to work with the SQE. There is
really no single answer to this question because there are so many variables to consider and the

6-2 Sequel 11 Programmer’s Guide - Performance

answer ultimately must be addressed query by query based on the detailed processing require-
ments of each query. Some queries will be found to consistently run faster on the older CQE,
while others will always run faster on the SQE. For most simple to moderately complicated que-
ries, the SQE performance benefit will probably average between 10 to 20 percent improvement.
Some queries will run in the SQE in just a small fraction of the time it takes to process in the
CQE.

SQE (and remote db) Specific Performance Considerations
Sequel 10 offers significantly enhanced opportunities to take advantage of our familiar SQL
extensions and also enjoy the performance benefits of the SQE. This benefit is provided by our
new runtime translation of SQL statements written in *SEQUEL syntax into the syntax required
by the target database. Please refer to the Sequel 10 SQL Reference Guide for a detailed discus-
sion of capabilities and limitations of this feature.

There are two performance considerations to keep in mind when using this runtime conversion
feature. First, there is a small amount of overhead in translating the SQL statement each time the
view is run. The time required for this conversion is usually not noticeable to users.

The second performance consideration is considerably more complicated. Sequel 10 relies on
java routines to perform the SQL translation and java routines require the existence of an active
Java Virtual Machine (JVM) environment. The time it takes to create a JVM is dependent on
several factors, among which is the length of time system wide since the last JVM was created.
The system creates JVM objects that are available for use by any job that needs them. If these
objects already exist prior to the SQL conversion request, then the JVM will be established in a
significantly shorter time.

If there is no active JVM on the machine when the conversion request is made, there will be a
noticeable delay in running that first query. The process of creating a JVM can frequently take
several seconds to complete. Because performance benefits directly from the pre-existence of a
JVM, it may be advantageous to schedule a repeating job to perform Sequel's SQLCONNECT
command at regular intervals.

Index Creation

One of the objectives during query execution is to minimize the amount of time required to
retrieve the information. Data management frequently resorts to using indexes in order to
achieve this. Indexes can be used to link files along the path specified by the JOIN clause, to sat-
isfy the criteria of the WHERE or HAVING clauses, to perform the grouping indicated by the
GROUP BY clause, and to place records in the order desired by the ORDER BY clause. Some-
times a single index can be used to accomplish all of these functions. Other times, several
indexes can and will be used. In some situations, the query processor will choose not to build an
index at all, and simply process the records as they occur in the file(s).

Many times an existing index can be used to satisfy the need. If status messages are being
reported, the fact that an index is being built will be displayed at the workstation. Unfortunately,
it can cause confusion because data management uses several different strategies in building
indexes. Whether it uses one or many indexes, uses existing indexes or creates new ones, or
chooses not to use any indexes at all is based on a complex optimization and performance evalu-
ation made by the data management routine.

Performance 6-3

Sometimes the query processor will need to read each record in the file in order to construct an
index. This is a time consuming process, but still proceeds at an amazing pace. Although it may
take considerable time to build the index, the query processor has determined that the index cre-
ation time will be more than offset by the time to process the data.

Sometimes a new index can be created simply by reading through the entries of an existing
index, rather than reading each record. This will take a fraction of the time required to build an
index from scratch. At other times, a new index will be created which is simply an optimized
copy of an existing index. The new index can be processed more quickly than the existing index
because of the optimization it has undergone. Unfortunately, the system makes no distinction in
its notification to the user. Consequently, some users will automatically assume a lengthy wait
will ensue whenever they see the index creation message. Don't assume that the query will take a
long time to execute simply because the index creation message appears.

There are some ways that the Sequel user can control performance through indexes. Values for
the OPTIMIZE keyword on the Sequel commands can sometimes improve performance by pro-
viding clarification of the query processor's objectives. Interactive results can frequently be
improved by using the *FIRSTIO value - especially if the query returns a large number of
records that will, in all probability, never be viewed by the user.

Another method to assist data management is to use logical files and/or SQL/400 indexes in
order to "pre-create" the indexes it will need. If a particular query is being performed on a regu-
lar basis, it may be a good practice to analyze it, attempt to determine the indexes that the query
processor is creating, and then build a logical file with the key path of the index. When the query
is subsequently executed, data management will be able to use the index from the logical file
rather than being forced to create a new one. If you use this approach, be aware that the query
processor will be able to share only those indexes that have been created with
ACCPTH(*IMMED). In addition, if the file has select/omit criteria, it must use the DYNSLT
keyword to eliminate the select/omit criteria from the index.

A final suggestion for improving query performance with respect to index management involves
restraining the appetite for the ORDER BY clause. Although this is not always practical, remem-
ber that anything you can do to reduce the need (and time) for index creation will result in
reduced execution time.

Processor Usage

As mentioned above, query execution is usually more demanding on the input/output resources
available than on the processor itself. Nonetheless a significant amount of energy can be con-
sumed in translating, computing, and mapping the data from its representation on disk to its final
image in the view.

During execution of the request all execution priorities established for the job will be preserved.
Other jobs at the same priority level will not be affected by the query execution after its initial
timeslice interval has expired, provided that sufficient storage is available in the executing stor-
age pool. Jobs at lower priority levels will receive minimal attention by the system during the
execution of the query since the higher priority request (the query) has not completed.

Remember that the CPU usage statistic on the system status and active job displays is as much
an indication of the fraction of unused CPU power as it is a descriptor of CPU activity. Consider-
ing that the function of the CPU is to process data, regular CPU underemployment implies

6-4 Sequel 11 Programmer’s Guide - Performance

excess machine capacity. CPU activity in excess of 85% during the duration of a long-running
request (such as a query) is not necessarily cause for alarm!

Execution Time

Query execution time is a function of the time necessary to perform the overhead associated with
accessing the data, acquiring the data, completing calculations, and presenting the results. Obvi-
ously, simple queries will complete more quickly than complicated ones.

Perhaps the largest determinate of perceived interactive performance is the time necessary to
present the initial group of records to the user. The longer this initial waiting time, the worse the
performance is judged to be. Two factors can serve to exacerbate this situation.

Grouping queries usually require that several records must be processed in order to produce one
record that the user will see. Conceivably, hundreds or perhaps thousands of records will be
required to create enough groups to fill a display. Obviously a situation where several thousand
record accesses are required in order to present a single display of information to the user will
result in complaints of poor performance. Actual system performance in accessing these many
thousands of records may be outstanding, yet the query is still perceived as slow!

An additional complicating factor can be caused by data mapping errors. These errors occur
when underlying records have one or more field definitions that cannot be satisfied. The most
usual cause of these errors is a length specification that is too short. Calculations that result in
overflow results, or data fields that are redefined with a different length can both cause data
mapping errors. Sequel will send a message to the job message queue and continue processing
with the next one. Messages are signalled for each error. This can cause delays in processing the
query. The best method of diagnosing this situation is to use the display job (DSPJOB) capacity
of the system request function in order to examine the current job message queue. If an unac-
ceptable number of data mapping errors have been detected, the query should be cancelled and
modified.

In assessing the amount of time necessary to execute the query, keep in mind that all functions
are occurring at the microcode level of the machine. This means that the fastest possible mecha-
nisms are being used to satisfy the data request. No high level language program can perform the
same function, over the same data, in less time.

If the amount of time necessary for query completion is unacceptable, then consider some alter-
natives. Perhaps the query can be modified so that it uses different data. A summary file might
be created and maintained in order that a grouping query can be avoided. Logical files can some-
times be created in order to avoid lengthy index creation waits. Perhaps a report, executed in
batch mode during non-peak computer usage, would be more appropriate than an interactive dis-
play.

Finally, remember to keep the purpose of the request in perspective. It is frequently true that par-
ticularly valuable or complicated information requests will simply require a corresponding mea-
sure of computing effort to satisfy. You must judge whether or not the value of the information
requested outweighs the cost to acquire it.

Sequel Objects 7-1

Sequel Objects

This section is provided in order to pass along some technical information about Sequel that
didn't seem to fit properly anywhere else. The information in this section will be useful primarily
to those involved in installing, upgrading, and supporting the product.

SQLEXEC Output File

The SQLEXEC file serves as a template for files created by the EXECUTE command. It is sim-
ilar to the files in the QSYS library that serve the same purpose for IBM commands. It should
never have any data in it.

When EXECUTE creates files they will have attributes that match those of the SQLEXEC file
on your library list. You can change the following attributes of the SQLEXEC file in the
SEQUEL library or create another SQLEXEC file ahead of SEQUEL/SQLEXEC in order to
affect files created by EXECUTE:

MAXMBRS
SIZE
ALLOCATE
CONTIG
FRCRATIO
WAITFILE
WAITRCD
DLTPCT
LVLCHK

Use the Change Physical File (CHGPF) command to change the attributes of the SQLEXEC file.

SQLEXEC User Space

Each retrieval and modification command allows you to specify either a permanent view, created
using the Create View command, or an ad hoc SQL statement. If you use an SQL statement on
your Sequel request, the Sequel software creates a temporary view (QTEMP/SQLEXEC) auto-
matically. This user space is deleted when your request completes.

7-2 Sequel 11 Programmer’s Guide - Sequel Objects

Distribution of Sequel Output

Output from all Sequel commands (except for print keys) is sent to the SQLPRTx (x=1, 2, 3 ... 8)
printer files. They are created so that output will be directed to the output queue specified on the
OUTQ Parameter of the REPORT, BCHREPORT, PRINT, or BCHPRINT command. The
default value of *SETDFT indicates that the output queue defined in your user defaults will be
used. The OUTQ Parameter can be changed when the print request is made.

The printer files (SQLPRTx) can be changed using the Change Printer File (CHGPRTF) com-
mand and modify the default form size, output queue, printing attributes, etc.

Sequel PRINT, REPORT, and PRTRPTD requests perform Override With Printer File (OVR-
PRTF) commands prior to creating their output in order to reflect values specified on the com-
mand. Consequently, some spooled file attributes may be different from the values indicated by
the printer file.

The final destination of your output may be determined by the printer file attributes, your job
definition, or system values. Refer to the CL Reference manual for a complete description of
these Parameters and how they work.

Assuming that no changes have been made to the SQLPRTx printer files, you can change the
destination of your output prior to running a printout producing command by taking one of the
following actions:

Use the OUTQ(output-queue-name) Parameter on the BCHREPORT, REPORT, BCH-
PRINT, or PRINT command to change the default output queue for your user.

Use OVRPRTF SQLPRT1 OUTQ(output-queue-name) to redirect the output from all subse-
quent Sequel commands. If you will be producing output via the PRINT command, you
should also issue overrides for printer files SQLPRT2, SQLPRT3, ... SQLPRT8. The output
will be directed to the specified queue until another OVRPRTF command is run, or the pro-
gram applying the override ends.

Use the DSNVIEW exit display or a WRKVIEW prompt display to submit a job and route
the output to the queue identified on the display. Note that the output queue entered on these
displays is not saved as part of any view or report definition. The techniques discussed
above should be used to direct the output for a Sequel command when it is run via an alter-
native method.

Set your Sequel defaults to reflect the output queue you would like output directed to.

Sequel Objects 7-3

Programs with USRPRF(*OWNER)

There are several programs in Sequel that require USRPRF(*OWNER) authority. You may
change the programs' owner or the USRPRF(*OWNER) attribute if you wish. However, doing
so may prevent Sequel users from taking full advantage of the product. Descriptions of the pro-
grams are listed below.

CHGSQDFT

This program changes the "preferred" settings in the user data areas. When the user data area is
created, it is created under a "foreign" user profile (QDFTOWN), with AUT(*USE) granted to
the public. This prevents a user from changing their (or anyone else's) settings via the CHGDTA-
ARA command.

In order to change their settings via the SETDFT command, users must have *CHANGE author-
ity to the data area. By creating the CHGSQDFT program so that it adopts its owner's (QSYS)
authority, the user will be able to update their default settings under Sequel's control. They will
not be allowed to change any settings that are prohibited to them (view & outfile libraries, com-
mand line, etc.).

If this program is changed to USRPRF(*USER), users without *CHANGE authority to a default
data area will be unable to change their settings. In addition, Sequel will be unable to automati-
cally create default data areas for new users unless they have both *USE authority to the Create
Data Area (CRTDTAARA) command, and *ADD authority to the library containing the
SQ#DFT data area. If they do not have these rights and you change the CHGSQDFT program to
USRPRF(*USER), you must use SETDFT to create user data areas before a new user will be
able to use Sequel.

For the program to work correctly, the product must be installed under the QSECOFR user pro-
file. Otherwise, the ownership of the Sequel programs will be changed (to QDFTOWN) and the
programs listed below will not be authorized to the data areas they need to access.

ADMVPCOA

This program runs from Viewpoint Administrator under *OWNER specifically to check Sequel
administrator rights to other users without the need to have *USE authority on each user profile.

ADMVPOBJC

This program runs from Viewpoint Administrator under *OWNER specifically to create, modify
or delete other users default data areas.

ADMVPSEC

This program runs from Viewpoint Administrator under *OWNER specifically to check Sequel
administrator rights to other users without the need to have *USE authority on each user profile.

QZRCRTPF and QZRLVLID

7-4 Sequel 11 Programmer’s Guide - Sequel Objects

QZRCRTPF and QZRLVLID are IBM written APIs that allow Sequel to create physical files
through the EXECUTE command and also check level ids (also for EXECUTE). These pro-
grams call other IBM programs that PUBLIC does not have authority. Adopting QSYS authority
makes the necessary programs accessible to all users.

RSL809

This object is used by the product licensing process.

SQL0245

This object is used by the product licensing process.

SQL815

This object is used by the product licensing process.

SCRCLUR

This module checks Sequel commands to determine whether it is available to a user with limited
capabilities.

SQLCHG04

Because we include the Viewdef, TblDef, RptDef, and CRODef, this program needs to be com-
piled with OPTION(*DUP *ATR *LIST *OWNER).

SQLCHKCGI

This program runs from Viewpoint Administrator under *OWNER specifically to check Sequel
administrator rights to other users without the need to have *USE authority on each user profile.

SQLRNMO

To restore objects from QRPLOBJ we need to adopt authority to the library. This program
accepts all the QLIRNMO parms, calls it and passes back any exception messages as diagnos-
tics. It also sends SQL2121/SQL2122 (analog of CPF2121) to the joblog as INFO/ESCAPE to
indicate what happened. If the caller's ERRCOD suppresses exceptions we won't send SQL2122
and count on the caller to look at the result ERRCOD.

VPTINIT

Sequel Objects 7-5

The VPTINIT program needs QSYS authority because some ViewPoint objects are created into
the QRECOVERY library. QRECOVERY is a convenient place to hold "temporary" objects
because it is routinely cleared. PUBLIC users do not have authority to create objects into QRE-
COVERY, so we adopt the necessary authority.

VPTENTRY_1

Optionally, this program can be use to swap a user profile from one user to another in the current
ViewPoint job. You MUST pass the user profile and password for the user to this program in
order to change the job to that user.

SQLRQS Message Queue

This message queue is the receiver for messages that are sent when users makes a batch request
from the user interface (DSNVIEW) or the runtime prompter. OS/400 limits the request data on
a submitted job to 256 characters or less. Clearly this is shorter than many views that will be run.
Sequel allows users to submit requests with statement lengths up to 5000 characters by sending
the SQL statement as a message to the SQLRQS queue.

Message QRY1000 is placed on the message queue by the user interface or runtime prompter.
The message data consists of the complete Sequel command (PRINT, REPORT, or EXECUTE)
including the SQL statement. The message key corresponding to this message is passed as a
Parameter to the submitted batch job. When the job begins executing, it removes the message
from the message queue and runs it via QCMD. You should ensure that the routing entry used by
the SEQUEL/SEQUEL job description is using the QCMD request processor.

If the batch job never executes, or is canceled from the subsystem prior to removing the message
from the queue, the message will never be removed by Sequel software. Although this should be
an infrequent occurrence, the message queue should be periodically examined and old messages
(which will never be run) should be removed.

You can examine the message queue by using the command:

DSPMSG SEQUEL/SQLRQS

You will receive a display which allows you to examine the messages currently on the queue and
to remove them either individually or all at once. Messages displayed in first in first out (FIFO)
order. You can examine individual messages by placing the cursor on a message and pressing the
help key. The date and time that it was created will be indicated on the subsequent display.

Remove individual messages by positioning the cursor on them and pressing F6. Alternatively,
you may remove all messages in the queue by pressing F13.

7-6 Sequel 11 Programmer’s Guide - Sequel Objects

Menu Driver Files

The Sequel menu handling program runs the commands that are stored in a source member tied
to the menu name. The MNUCMD file in the SEQUEL library contains the source members for
all of the Sequel menus.

Source member format includes the title of the menu and the option number and command to be
run for each option of the menu. Refer to the following example.

 5738PW1 V4R1M0 970327 SEU SOURCE LISTING 03/14/98 13:01:49 PAGE 1

 SOURCE FILE SEQUEL/MNUCMD
 MEMBER AUDITQQ

 SEQNBR+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5+... 2
0001.00 AUDITQQ,1
0002.00 0001 ANZAUDDTA /*SBM*/
0003.00 0002 ?DLTAUDDTA /* */
0004.00 0003 SETAUDDFT /*INT*/
0005.00 0004 ?GPHAUDSUM /*INT*/
0006.00 0005 WRKAUDDTA /*INT*/
0007.00 0006 WRKAUDQRY /*INT*/
0008.00 0007 ?PRTAUDDTA /*SBM*/
0009.00 0008 ?PRTAUDDTL /*SBM*/
0010.00 0009 ?PRTAUDPTH /*SBM*/
0011.00 0010 ?PRTAUDFIL /*SBM*/
0012.00 0011 WRKSEQUEL OBJ(*LIBL/AUD*) /*INT*/

This source member controls the execution of the auditing menu. The command that each option
will run is listed next to the option number. Selective prompting requests are allowed. Refer to
the CL Programmer's Guide for complete information about the selective prompting characters.

Positions 114-120 of each option record can specify a comment that indicates whether the com-
mand will be restricted to interactive execution (/*INT*/) or whether the "Run in Batch" flag
(function key 18) controls when it will be submitted (/*SBM*/) to the batch job queue. The
menu display will reflect the status of the option by appending "in batch" to the option descrip-
tion if it will be submitted. Function key 14 of the menu will always submit commands to the
batch job queue unless they have an /*INT*/ indication in the control record.

You can customize the Sequel menus to your environment by changing the command definitions
and/or the selective prompting values. Use SEU to change the menu source member. Once the
member is updated, the menu will work in accordance with the changes you have made.

Appendix A-1

Appendix

Dynamic SQL/400 Access/400 Access (DYNSQL)

SQL/400 is a program product that can be licensed from IBM. It includes an interactive environ-
ment that allows you to run SQL statements from your workstation, and several precompilers
that allow you to embed SQL statements directly into your HLL source code. You must license
SQL/400 from IBM if you want to use the interactive environment of if you want to write and
compile programs that use SQL/400 statements.

Runtime support for SQL/400 is included with the base support of the OS/400 operating system.
This means that programs that include SQL statements will run correctly on any AS/400-- even
if the SQL/400 program product does not reside on it. SQL programs can be written and com-
piled on any AS/400 which has SQL/400 and then run on an AS/400 without it.

This allows us to include with Sequel a sample SQL/400 program (and its source code) that
allows you to try some of the features of SQL/400 and even use it in your environment. It is nat-
ural to attempt to compare Sequel and SQL/400 as there is a certain amount of overlap between
them and we invite you to do so.

You will find that Sequel outperforms SQL/400 in command entry and control language (CL)
applications, and that Sequel's output capabilities far exceed those of SQL/400. SQL/400 was
simply not meant for control language applications, end-user ad hoc queries, or report writing:
Sequel was designed specifically for them.

Instead, SQL/400 was designed to be embedded into high level language programs (such as
RPG and COBOL) so that HLL programmers can avoid some of the tedium associated with
writing code. Sequel doesn't do this at all and never will - it simply was not meant for it.

You will also discover that Sequel and SQL/400 syntax is very similar and that learning SQL/
400 statements is easy once you are familiar with Sequel. Once you have become familiar with
Sequel and SQL/400 you will most likely realize that they both have a place in your data pro-
cessing environment and coexist quite nicely together.

DYNSQL Objects

Three objects comprise Sequel's DYNSQL facility. They reside in the SEQUEL library.

*CMD DYNSQL: allows command entry and control language access to SQL/400. It was
compiled from the source code in member DYNSQL of SEQUEL/QCMDSRC.

*PGM DYNSQL: an RPG command processing program for the DYNSQL command. It
includes embedded SQL statements and makes use of dynamic SQL to run the requests you
enter.

*PGM SQLERRC: a control language error handling and message forwarding program. It
sends messages from the RPG command processing program to the environment that made
the SQL request. Source code for this program is in member SQLERRC of SEQUEL/QCL-
SRC.

A-2 Sequel 11 Programmer’s Guide - Appendix

We have included the source code for the command and programs so that you can examine it and
make any modifications you might find useful. You are free to distribute it if you wish.

Using DYNSQL

The DYNSQL command can be entered from either the interactive or batch environment, how-
ever a function check will occur if a SELECT statement is issued from a batch environment as
there is no associated workstation to which display data can be routed.

The DYNSQL command has one Parameter for the SQL Parameter.

The SEQUEL library is specified as the product library (PRDLIB) for the command. Conse-
quently, the DYNSQL command can be duplicated and moved to a separate library on your sys-
tem. When the command is issued, Sequel will automatically be added to your library list and
removed when the command completes.

The following SQL/400 statements are supported and can be issued with the DYNSQL com-
mand:

Cursor control statements (DECLARE, OPEN/CLOSE, FETCH, WHENEVER) and dynamic
SQL statements (PREPARE, DESCRIBE, EXECUTE, EXECUTE IMMEDIATE), and SQL/
400 commitment control statements (COMMIT, ROLLBACK) are not allowed.

SQL/400 data definition statements can be used to create and delete SQL databases, tables,
views and indexes and to document then through LABEL ON and COMMENT ON statements.
SQL/400 data control statements can be used to grant and revoke authority to SQL objects and to
manage object locks on them.

UPDATE, DELETE, and INSERT statements can be used to modify data in SQL tables and in
non-SQL files. These statements allow set at a time changes to be made to the AS/400 database.

CREATE COLLECTION Create SQL/400 database library
CREATE DATABASE Create SQL/400 database library
CREATE TABLE Create SQL/400 table physical file
CREATE VIEW Create SQL/400 view logical file
CREATE INDEX Create SQL/400 index logical file
DROP Delete SQL/400 database, view, or index

COMMENT ON Add/Replace catalog comments about tables, views, columns
LABEL ON Add/Replace catalog labels about tables, views, columns.

GRANT Grant Authority
REVOKE Revoke authority
LOCK TABLE Acquire object lock

DELETE Delete records from a file
INSERT Insert records into a file
UPDATE Update records in a file
SELECT Retrieve records

Dynamic SQL/400 Access/400 Access (DYNSQL) A-3

DYNSQL provides ad hoc access to the SELECT statement through a combination of SQL/400
and Query/400 support. Using the SELECT does not require that the Query/400 program prod-
uct (5728QU1) be installed since runtime support for the RUN Query (RUNQRY) command is
also included in the base support for the OS/400 operating system.

When a SELECT statement is entered, DYNSQL creates a temporary view from the statement,
issues the RUNQRY command against the resulting logical file, and then deletes the view (using
DROP) when you press the exit key from the RUNQRY display.

The temporary view named TEMP is created in a database library named SQLBASE. Before
DYNSQL can process any SELECT statements on your system, the SQLBASE database library
must be created. You can create it with DYNSQL by issuing the following command:

DYNSQL SQL ('CREATE COLLECTION SQLBASE')

This command will take several minutes to complete. The result will be a new library with sev-
eral SQL/400 related objects in it. You can place your own SQL/400 tables, indexes and views
into it if you wish.

Once you have created the database library, you will probably want to authorize other users to
use it. Other users must be authorized to place objects into SQLBASE if you want to enable
them to use DYNSQL. You can do this simply by issuing:

GRTOBJAUT SQLBASE *LIB *PUBLIC *USE
GRTOBJAUT SQLBASE/*ALL *ALL *PUBLIC *USE

You will need to use the GRANT statement or the grant object authority (GRTOBJAUT) com-
mand for each table, view, or index that you want others to use since *PUBLIC *EXCLUDE is
the authority assigned to all objects created by SQL/400.

DYNSQL Restrictions

Several restrictions are imposed because DYNSQL uses an RPG program to process dynamic
SQL statements rather than a more sophisticated approach. The restrictions are summarized
below:

ORDER BY is not allowed on the SELECT statement. The command processing program
uses the DYNSQL statement to create an SQL/400 view. ORDER BY is not part of the sub-
select statement allowed by CREATE VIEW nor can an ordering method be specified on the
RUNQRY command. Consequently, all information returned by DYNSQL will be unor-
dered.

UNION and UNION ALL are not allowed on the SELECT statement. The command pro-
cessing program uses the DYNSQL statement to create an SQL/400 view. UNION and
UNION ALL are not part of the subselect statement allowed by CREATE VIEW.

Library, file and field name prompting is not available.

SQL statement prompting is not available.

Derived columns (involving expressions) cannot be specified on a SELECT statement. Use
of derived fields in a SELECT statement forces a special form of the CREATE VIEW state-
ment to be used. DYNSQL is not sophisticated enough to create these statements. This

A-4 Sequel 11 Programmer’s Guide - Appendix

restriction can be circumvented by issuing the CREATE VIEW statement through DYNSQL
then either performing your own RUNQRY command on the resulting view or using
"SELECT * FROM view-name" via DYNSQL.

Statement length is limited to 256 characters because SQL/400 cannot accept data struc-
tures (with declared subfields) as host variables in dynamic SQL statements.

SQL/400 Statements Supported By DYNSQL

This section describes the function and syntax of the SQL statements supported by the DYNSQL
command. More complete information about SQL/400 statements can be obtained from the
Structured Query Language/400 Reference (SC21-9608) and the Structured Query Language/
400 Programmer's Guide (SC21-9609) manuals available from IBM.

Syntax for SQL/400 statements is very similar to Sequel syntax with two notable exceptions.
First, SQL/400 file qualification is required to be of the "library/file" form. Sequel allows both
the "library/file" and "file.library" qualification forms. SQL/400 correlation names can be
assigned by placing the synonym after the file name in the FROM clause. Sequel does not allow
correlation names, longer than 10 positions.

Second, field qualification in SQL/400 is of the form "file.field" rather than the "field.file" syn-
tax allowed by Sequel. SQL/400 does not allow the file index qualification form (ex.
CNAME.1) which is allowed by Sequel.

CREATE COLLECTION
CREATE DATABASE
These statements create a database library which can hold SQL tables, views, and indexes. You
need authorization to create library (CRTLIB) and create data dictionary (CRTDTADCT) com-
mands in order to use them.

Example

CREATE DATABASE SQLBASE

CREATE TABLE
Creates an SQL table (equivalent to a non-indexed physical file) in an SQL/400 database library.
You must have authority to the CRTPF command to use this statement.

Example

CREATE TABLE SQLBASE/PROJ

(PROJNO SMALLINT NOT NULL
PROJNAME CHAR (24) NOT NULL WITH DEFAULT,
DEPTNO CHAR (3) NOT NULL,
MAJEMP SMALLINT NOT NULL WITH DEFAULT,

Dynamic SQL/400 Access/400 Access (DYNSQL) A-5

PRSTAFF DECIMAL (5,2) NOT NULL WITH DEFAULT,
PRSTDATE NUMERIC (6) NOT NULL WITH DEFAULT,
PRENDATE NUMERIC (6) NOT NULL WITH DEFAULT,
MAJPROJ SMALLINT NOT NULL WITH DEFAULT)

CREATE INDEX
Creates an SQL index logical file which is based on a native physical file or SQL table. Indexes
can be used to improve performance of your queries. Unique indexes can be created to insure
database integrity Performance of SQL/400, Sequel, Query/400 (including RUNQRY),
OPNQRYF and PC/Support queries can be improved by creating indexes over the selection
(WHERE clause) and ordering columns used by the query.

You cannot reference an index in the FROM clause of a query statement, although you can refer
to an index logical file in the RUNQRY command if you want. You must have authority to the
CRTLF command to use this statement.

Examples

CREATE INDEX sqlbase/custname ON sequelex/custmast (cname)
CREATE INDEX sqlbase/ordcust ON sequelex/ordhead (cusno)
CREATE UNIQUE INDEX sqlbase/order ON sequelex/ordhead (ordno)

CREATE VIEW
Creates an SQL view logical file which is based on one more or more native physical files or
SQL tables. The view must be placed in an SQL/400 database library. You must have authority
to the CRTLF command to use this statement.

Once a view has been created, you can run it and display the results by using RUNQRY or by
issuing another DYNSQL command of the form "select * from sqlbase/viewname". If you want
to use RUNQRY, issue a command like:

RUNQRY QRY (*none) QRYFILE(sqlbase/viewname)

Examples

CREATE VIEW sqlbase/margin (descp, lstpc, stdcl, margin) AS
 SELECT descp, lstpc, stdcl, (lstpc-stdcl)/stdcl*100
 FROM sequelex/partmast

CREATE VIEW sqlbase/ghbexer3 (cusno, cname, list, actual, diff) AS
 SELECT c.cusno,c.cname,SUM(quano*listp), SUM(quano*actsp),
 SUM(quano*(listp-actsp))
 FROM custmast c,ordhead h,ordline 1
 WHERE c.cusno=h.cusno AND h.ordno=1.ordno
 GROUP BY c.cusno, cname

A-6 Sequel 11 Programmer’s Guide - Appendix

DROP
Deletes an SQL table, view, index or database. It is equivalent to the corresponding OS/400
delete command except that it can only be used on SQL/400 objects. You must have authority to
the correct delete command as well as existence authority to all object referenced by this state-
ment.

Examples

DROP TABLE sqlbase/proj
DROP DATABASE sqlbase
DROP INDEX sqlbase/custname

COMMENT ON
Adds or replaces comment information in the SQL catalog within a database library. You can
supply up to 254 characters of text for a comment. The COMMENT ON statement changes the
REMARKS column in catalog views and tables

Examples

COMMENT ON TABLE sqlbase/proj IS 'Project table'

COMMENT ON sqlbase/proj
(projno IS 'Project number' , projname IS "Project
 name", deptno IS "Department ID' , majemp IS
 "Project leader')

LABEL ON
Adds or replaces label information in the SQL catalog within a database library. You can supply
up to 30 characters of text for tables and views and 20 characters of text for columns. The
LABEL ON statement changes the LABEL column in catalog views and tables. When LABEL
ON is performed for a column, the description of the column in the file definition is also
changed.

Examples

LABEL ON TABLE sqlbase/proj IS "Project table"

LABEL ON sqlbase/proj
 (projno IS "Project", prname IS "Name'
 deptno IS 'Dept ID' , majemp IS 'Leader')

GRANT
Grants privileges to users. GRANT statements are translated into OS/400 grant object authority
(GRTOBJAUT) commands.

Dynamic SQL/400 Access/400 Access (DYNSQL) A-7

Examples

GRANT ALL ON sqlbase/proj TO PUBLIC
GRANT INDEX ON sqlbase/proj TO qpgmr

REVOKE
Revokes privileges from users. Like GRANT, REVOKE statements are translated into OS/400
revoke object authority (RVKOBJAUT) commands.

Examples
REVOKE DELETE, INSERT, UPDATE ON sqlbase/proj FROM PUBLIC
REVOKE ALL ON sqlbase/proj FROM smith

LOCK TABLE
Acquires a shared or exclusive object lock on the specified table. It is equivalent to the OS/400
allocate object (ALCOBJ) command. Either a *SHRNUP or *EXCL object lock is obtained by
the statement.

Example

LOCK TABLE sqlbase/proj IN EXCLUSIVE MODE

DELETE
Deletes records from a table, view, or native OS/400 file. Although SQL/400 supports both
searched and positioned deletes, only the searched form is supported by the DYNSQL com-
mand.

Examples

DELETE FROM sqlbase/proj
DELETE FROM sequelex/custmast WHERE cstte='MN'

INSERT
Adds records to a table, view or native OS/400 file.

Examples

INSERT INTO sequelex/triangles VALUES (5 12)

INSERT INTO sequelex/custmast (cname, cusno)
 SELECT name, numbr FROM address WHERE st='IL'

A-8 Sequel 11 Programmer’s Guide - Appendix

UPDATE
Updates records in a table, view or native OS/400 file. Although SQL/400 supports both
searched and positioned updates, only the searched form is supported by the DYNSQL com-
mand.

Examples

UPDATE sqlbase/proj SET prstdate=0, prendate=0, deptno='XXX'
UPDATE sequelex/custmast SET cstte='NE' WHERE cstte='NB'

SELECT
Displays records from a table, view, or native OS/400 file. The interactive and compiled forms
of SQL/400 supports the full query statement allowing both UNION and ORDER BY specifica-
tions. DYNSQL supports only the subselect form of the query statement in the SELECT state-
ment. This means that neither a UNION nor an ORDER BY specification can be made. In
addition, you cannot specify an expression in the SELECT clause. Although expressions can be
specified on both the WHERE and HAVING clauses. A considerably more sophisticated pro-
gram than DYNSQL (written in a language such as PILOT/I) is required to overcome these
restrictions.

Examples

SELECT * FROM sequelex/custmast
SELECT prdno, descp, ittyp, csord FROM sequelex/partmast
WHERE ittyp='M' OR ittyp='F'
SELECT cname, cphon, amtdu, crlim FROM sequelex/custmast
WHERE amtdu>crlim+1000

Examples

The examples below illustrate some of the overlap between DYNSQL using SQL/400 and
Sequel. Run them to gain a better understanding of Structured Query Language and some of the
strengths of each product.

Customer Details
Select all the information from the CUSTMAST file in the SEQUELEX library:

DYNSQL SQL('SELECT * FROM SEQUELEX/CUSTMAST')

Now compare the results with those returned by the Sequel statement:

DISPLAY SQL('SELECT * FROM SEQUELEX/CUSTMAST')

Dynamic SQL/400 Access/400 Access (DYNSQL) A-9

Now, select some of the information for customers in specific states:

DYNSQL 'SELECT CUSNO, CNAME, CSTTE, CRLIM, AMTDU
 FROM SEQUELEX/CUSTMAST WHERE CSTTE IN (''IL'', ''CA'')'

DISPLAY 'SELECT CUSNO, CNAME, CSTTE, CRLIM,AMTDU
 FROM SEQUELEX/CUSTMAST WHERE CSTTE IN ("IL", "CA")

Sequel allows you to use either single or double quotation marks to enclose character literals.
SQL/400 allows only single quotation marks. Since the SQL Parameter is a character value,
character literals passed to the DYNSQL command must be surrounded by an additional set of
quotation marks as indicated above.

Joining and Grouping
One of the exercises in the Tutorial section illustrates joining and grouping with SQL. We repeat
it here to provide you an opportunity to further understand Sequel and SQL/400. The example
below illustrates the Sequel syntax necessary to join the customer and order records and provide
a total "on order" value for each customer.

DISPLAY 'SELECT cusno.1,cname,SUM(orval) LEN (9,2) EDTCDE(J$)
 COLHDG("Customer" "Order" "value") NAME(totval)
 FROM sequelex/custmast,sequelex/ordhead
 WHERE cusno.1=cusno.2
 GROUP BY cusno.1,cname'

Since DYNSQL does not allow expressions in the SELECT statement, you must first create a
view that specifies your expression then issue the RUNQRY command against the view. Accom-
plish the query by typing:

DYNSQL 'CREATE VIEW sqlbase/onord (cusno,cname,totval) AS
 SELECT custmast.cusno,custmast.cname,SUM (orval)
 FROM sequelex/custmast,sequelex/ordhead
 WHERE custmast.cusno=custmast.cusno
 GROUP BY custmast.cusno,cname'

Once this completes, run the query using:

RUNQRY QRY(*none) QRYFILE(sqlbase/onord)

Finally, delete the view (unless you want it as a permanent view) with:

DYNSQL 'DROP VIEW sqlbase/onord'

A-10 Sequel 11 Programmer’s Guide - Appendix

Index I-1

Index
A
ACCPLN Parameter

CRTVIEW Command 2-43
RTVVIEWD Command 2-162

ALWCPY Parameter
CRTVIEW Command 2-41
RTVVIEWD Command 2-162

ALWNULL Parameter
EXECUTE Command 2-104
OPNSQLF Command 2-127
TABLE Command 2-197

ALWOPT Parameter
DISPLAY Command 2-63
SCRETURN Command 2-173

ANALYSIS Parameter
UPDVPTCMD Command 2-209

ANZAUDDTA Command 2-7
ASCII Text Format 2-105, 2-197
ATTRIB Parameter

DSPSCRIPTD Command 2-89
DSPTBLD Command 2-93
DSPVIEWD Command 2-97

Auditing Commands .. 2-5
AUT Parameter

BLDJDELF Command 2-14
CRTDASHLNK Command 2-31
CRTSCRIPT Command 2-32
CRTVIEW Command 2-45
DSNREPORT Command 2-70
DSNSCRIPT Command 2-74
DSNTABLE Command 2-77
RTVRPTSQL Command 2-155
RTVTBLSQL Command 2-159

Authority .. 2-1
Change View(CHGVIEW) 2-19

Authority Dictionary
Printing .. 3-19
Setting Up ... 3-5

B
Batch Only Processing 2-8, 2-9, 2-10, 2-11, 4-22
BCHEXECUTE Command 2-8
BCHPRINT Command ... 2-9
BCHREPORT Command 2-10
BCHSCRIPT Command 2-11
BLDJDELF Command ... 2-12
BLDOPTF Command ... 2-15

C
CASE Parameter

SCHSCRIPT Command 2-172

CCSID Considerations
EXECUTE Command 2-110
TABLE Command 2-202

CCSID Parameter
OPNSQLF Command 2-128

CFGQRYC04 Command 2-17
Changing Records ... 5-8
Characters per Inch 2-26, 2-82, 2-86, 2-91, 2-95, 2-

100, .. 2-132
CHGAUTMODE Command 2-18
CHGCMDDFT Command 2-131
CHGRPTD Command ... 2-25
CHGSQDFT Program ... 7-3
CHGTBLD Command .. 2-28
CHGVIEW Command .. 2-19
CHKIFSLOCK Command 2-29
CMD Parameter

PRTAUDDTA Command 2-136
RUNCMD Command 2-164
VPTRMTCMD Command 2-212

Comma Delimited Format 2-106, 2-199
Command Authority ... 2-1
Command level access ... 1-6
COMMENT ON ...A-6
COMMIT .. 5-4
COMMIT Parameter

EXECUTE Command 2-104
INSERT Command 2-117
OPNSQLF Command 2-126
TABLE Command 2-196
UPDATE Command 2-59, 2-204

Commitment Control ... 5-2
Starting ... 5-2
Using ... 5-3

Contact Frotra ... 1-10
Conversion Commands ... 2-4
Convert Query ... 2-49
COPIES Parameter

CHGRPTD Command 2-26
PRINT Command .. 2-131
REPORT Command 2-143
RTVRPTD Command 2-153

CPI Parameter
CHGRPTD Command 2-26
DSPDASHD Command 2-82
DSPRPTD Command 2-86
DSPSCRIPTD Command 2-91
DSPTBLD Command 2-95
DSPVIEWD Command 2-100
PRINT Command .. 2-132

I-2 Sequel 11 Programmer’s Guide - Index

RTVRPTD Command 2-153
CPU1 Parameter

PRTAUDDTA Command 2-136
CPU2 Parameter

PRTAUDDTA Command 2-136
CREATE COLLECTION ..A-4
CREATE DATABASE ..A-4
CREATE INDEX ..A-5
CREATE TABLE ...A-4
CREATE VIEW ..A-5
Creating Records .. 5-11
CRTDASHLNK Command 2-30
CRTSCRIPT Command 2-32
CRTVIEW Command .. 2-37
CVTPDMFSQL Command 2-48
CVTQRY Command .. 2-49
CVTRPT Command .. 2-52
CVTSQL Parameter

CVTSYNTAX Command 2-55
CVTSQTOIFS Command 2-53
CVTSYNTAX Command 2-55
CVTVIEW Command .. 2-56
CVTWHBLDR Command 2-57

D
DASHBOARD Parameter

DSPDASHD Command 2-80
Data Mapping

INSERT Command 2-116
Data Mapping Errors 2-110, 2-203
Data Modification ... 5-1
DATAQ Parameter

VPTRMTCMD Command 2-212
DATE Parameter

BLDJDELF Command 2-13
DATE1 Parameter

PRTAUDDTA Command 2-135
DATE2 Parameter

PRTAUDDTA Command 2-135
DATFMT Parameter

RTVVIEWD Command 2-162
DATSEP Parameter

RTVVIEWD Command 2-163
dBASE Format 2-105, 2-198
Decimal Data Errors .. 2-134
Default Report Layouts .. 2-71
Default Values

SQL .. 2-39, 4-7
VIEW .. 2-39, 4-7

DELETE ..A-7
DELETE Command 2-59, 5-5
Deleting Records ... 5-5
Delimited Format 2-106, 2-199
Delimiter-WRKPCFMT Command 2-218

DFTFLD Parameter
SETDFT Command2-178

DIR Parameter
CRTDASHLNK Command2-30

DLTAUDDTA Command2-66
Drill Down ...2-15
Drill Down Options ...2-15
DROP .. A-6
DSNREPORT Command2-69
DSNSCRIPT Command2-73
DSNTABLE Command ...2-76
DSNVIEW Command ...2-78
DSPDASHD Command ..2-80
DSPRPTD Command ..2-84
DSPSCRIPTD Command2-89
DSPTBLD Command ...2-93
DSPVIEWD Command ..2-97
DTAQNAME Parameter

UPDVPTCMD Command2-209
DTSTYLE Parameter

CRTVIEW Command2-44
DSNSCRIPT Command2-75
RUNSCRIPT Command2-169

DURATION Parameter
GPHAUDSUM Command2-113

Dynamic SQL .. A-1
Dynamic Views ...4-1
DYNSQL

Objects ... A-1
Restrictions ... A-3
Statements Supported A-4
Using .. A-2

DYNSQL Command .. A-1

E
EMLMSG Parameter

EXECUTE Command2-109
PRINT Command ..2-133
REPORT Command2-144
TABLE Command ..2-201

ENTITY Parameter
EXECUTE Command2-108
TABLE Command ..2-200

ENTITYATYR Parameter
EXECUTE Command2-108
TABLE Command ..2-200

Excel 2007 Format2-106, 2-198
Excel 5.0/95 Format2-106, 2-198
Excel 97 Format2-106, 2-198
Exception Join ..2-42
Exclusion Dictionary ...3-1
EXECUTE Command ...2-102
EXECUTEVPT Command2-112
Execution Time ..6-4

Index I-3

F
Field Level Security. See Sequel Security
FIELDS Parameter

INSERT Command 2-116
FILE Parameter

CVTPDMFSQL Command 2-48
PRTAUDFIL Command 2-138

FIND Parameter
SCHSCRIPT Command 2-171

FOOTING Parameter
CHGRPTD Command 2-25
RTVRPTD Command 2-153

FORMTYPE Parameter
CHGRPTD Command 2-26
RTVRPTD Command 2-152

FROMDATE Parameter
DLTAUDDTA Command 2-66

FROMJOB Parameter
DLTAUDDTA Command 2-67

FROMRPT Parameter
DLTAUDDTA Command 2-67

FROMTIME Parameter
DLTAUDDTA Command 2-66

FROMUSER Parameter
DLTAUDDTA Command 2-67

FROMVIEW Parameter
DLTAUDDTA Command 2-67

G
GPHAUDSUM Command 2-113
GRANT ..A-6

H
Heading Record-WRKPCFMT Command 2-219
HOLD Parameter

CHGRPTD Command 2-26
PRINT Command .. 2-131
REPORT Command 2-143
RTVRPTD Command 2-153

HTML Format .. 2-105, 2-198

I
IFS Path Rules

EXECUTE Command 2-107
REPORT Command 2-145
TABLE Command 2-199

IGNDECERR Parameter
CRTVIEW Command 2-43
RTVVIEWD Command 2-162

Inclusion Dictionary .. 3-2
Index Creation ... 6-2
INFILE Parameter

STMFVARSUB Command 2-193
Inner Join ... 2-42

INSERT ...A-7
INSERT Command 2-114, 5-11
Integrity Check ... 2-34, 4-8
INTO Parameter

INSERT Command 2-115
INTOTABLE Parameter

INSERT Command 2-115
IOCNT1 Parameter

PRTAUDDTA Command 2-136
IOCNT2 Parameter

PRTAUDDTA Command 2-136

J
JCHECK ParameterCRTVIEW Command 2-43
JDEFILE Parameter

BLDJDELF Command 2-12
JFANOUT Parameter

UPDATE Command 2-205
JOB Parameter

PRTAUDDTA Command 2-135
JOBD Parameter

RUNSCRIPT Command 2-169
JOBNBR Parameter

PRTAUDDTA Command 2-135
JOBQ Parameter

RUNSCRIPT Command 2-168
Joining Files .. 2-42
JORDER Parameter

CRTVIEW Command 2-42
RTVVIEWD Command 2-162

JTYPE Parameter ... 2-42
CVTSYNTAX Command 2-55

K
Kernel .. 1-2
Kernel Commands ... 2-1
KEYFLDCNT Parameter

EXECUTE Command 2-104
TABLE Command 2-197

Keywords ... 2-34, 2-38, 4-7

L
LABEL ON ...A-6
LANGID Parameter

OPNSQLF Command 2-128
LCLSYS Parameter

CVTWHBLDR Command 2-58
Level Check ... 2-109
LOCK TABLE ..A-7
Lotus Format .. 2-105, 2-198
LPI Parameter

CHGRPTD Command 2-26
DSPDASHD Command 2-82
DSPRPTD Command 2-86
DSPSCRIPTD Command 2-91

I-4 Sequel 11 Programmer’s Guide - Index

DSPTBLD Command 2-95
DSPVIEWD Command 2-100
PRINT Command .. 2-132
RTVRPTD Command 2-152

LSTDCTOBJ Command 2-120, 3-20
LSTDCTUSR Command 2-121, 3-19

M
MBROPT Parameter

BLDOPTF Command 2-16
DSPDASHD Command 2-82
DSPRPTD Command 2-85
DSPTBLD Command 2-95
DSPVIEWD Command 2-99
EXECUTE Command 2-103
TABLE Command 2-195

MERGE Format 2-106, 2-199
MGRSQLOBJ Command 2-122
MODE Parameter

CHGAUTMODE Command 2-18
MSG Parameter

CRTVIEW Command 2-41
RTVVIEWD Command 2-162

N
NBRRCDS Parameter

EXECUTE Command 2-103
TABLE Command 2-196

NEWVAL Parameter
SETDFT Command 2-178

NULL ... 2-13
Null Capable Fields 2-104, 2-127, 2-197
Null Value Considerations

EXECUTE Command 2-110
TABLE Command 2-202

Null Values 2-65, 2-118, 2-134, 2-164, 2-175
Numeric Edit-WRKPCFMT Command 2-219

O
OBJ Parameter

BLDOPTF Command 2-15
MGRSQLOBJ Command 2-122
PRTSEQUEL Command 2-141
WRKREPORT Command 2-220
WRKSCRIPT Command 2-223
WRKSEQUEL Command 2-221
WRKVIEW Command 2-224

Object Authority 1-7, 2-1, 2-19, 2-215
OBJTYPE Parameter

MGRSQLOBJ Command 2-123
PRTSEQUEL Command 2-141
WRKSEQUEL Command 2-222

Open Data Path ... 4-2
OPNID Parameter

OPNSQLF Command 2-125

OPNSCOPE Parameter
OPNSQLF Command2-127

OPNSQLF Command2-125, 4-24
OPTALLAP Parameter

OPNSQLF Command2-127
OPTIMIZE Parameter

CRTVIEW Command2-40
RTVVIEWD Command2-161

Option File ..2-15
OPTION Parameter

CRTSCRIPT Command2-33
OPNSQLF Command2-125

ORDER Parameter
PRTAUDDTA Command2-136

ORDERTYP Parameter
PRTAUDDTA Command2-136

Outer Join ..2-42
OUTFILE Command ..2-130
OUTFILE Parameter

BLDOPTF Command2-15
DSPDASHD Command2-81
DSPRPTD Command2-85
DSPSCRIPTD Command2-90
DSPTBLD Command2-94
DSPVIEWD Command2-98
EXECUTE Command2-102
STMFVARSUB Command2-193
TABLE Command ..2-195

OUTFORM Parameter
DSPRPTD Command2-86
DSPVIEWD Command2-100

OUTMBR Parameter
BLDOPTF Command2-16
DSPDASHD Command2-81
DSPRPTD Command2-85
DSPSCRIPTD Command2-91
DSPTBLD Command2-95
DSPVIEWD Command2-99
EXECUTE Command2-103
TABLE Command ..2-195

OUTPUT Parameter
DSPDASHD Command2-81
DSPRPTD Command2-85
DSPSCRIPTD Command2-90
DSPTBLD Command2-94
DSPVIEWD Command2-98
SCHSCRIPT Command2-172

OUTQ Parameter
DSPDASHD Command2-82
DSPSCRIPTD Command2-92
PRINT Command ..2-133
REPORT Command2-146

Override With Database File2-129
OVRFLW Parameter

Index I-5

CHGRPTD Command 2-26
DSPDASHD Command 2-82
DSPRPTD Command 2-86
DSPSCRIPTD Command 2-91
DSPTBLD Command 2-95
DSPVIEWD Command 2-99
PRINT Command .. 2-132

*OWNER Objects
ADMVPCOA .. 7-3
ADMVPOBJC .. 7-3
ADMVPSEC .. 7-3
QZRCRTPF ... 7-3
QZRLVLID ... 7-3
RSL809 ... 7-4
SCRCLUR ... 7-4
SQL0245 ... 7-4
SQL815 ... 7-4
SQLCHG04 ... 7-4
SQLCHKCGI ... 7-4
SQLRNMO .. 7-4
VPTENTRY_1 ... 7-5
VPTINIT .. 7-4

P
PAGELEN Parameter

RTVRPTD Command 2-152
PAGEOFL Parameter

RTVRPTD Command 2-152
PAGESIZE Parameter

CHGRPTD Command 2-26
DSPDASHD Command 2-82
DSPRPTD Command 2-86
DSPSCRIPTD Command 2-91
DSPTBLD Command 2-95
DSPVIEWD Command 2-99
PRINT Command .. 2-132

PAGEWID Parameter
RTVRPTD Command 2-152

PC Document .. 2-105
PCFMT Parameter

EXECUTE Command 2-105
PRINT Command .. 2-133
REPORT Command 2-145
TABLE Command 2-197

PDF Format .. 2-105, 2-198
Performance .. 6-1
PMPSBM Parameter

RUNSCRIPT Command 2-169
PRDLIB Parameter

CVTWHBLDR Command 2-57
PRINT Command .. 2-131
Processor Usage ... 6-3
Programming with Sequel 4-1
PRTAUDDTA Command 2-135

PRTAUDDTL Command 2-137
PRTAUDFIL Command 2-138
PRTAUDPTH Command 2-139
PRTRPTD Command .. 2-140
PRTSEQUEL Command 2-141

Q
QMQRY Parameter

CVTQRY Command 2-50
QRY Parameter

CVTQRY Command 2-49
QRYTYPE Parameter

CVTQRY Command 2-49
Query Parameters ... 2-117
Query Processor ... 6-1

R
RCDFMT Parameter

EXECUTE Command 2-103
OPNSQLF Command 2-127
TABLE Command 2-196

RDBASIC .. 2-85
RDSQL .. 2-85
RECIPIENT Parameter

EXECUTE Command 2-108
PRINT Command .. 2-133
REPORT Command 2-144
TABLE Command 2-200

Record End-WRKPCFMT Command 2-219
Remote Database Considerations

DELETE ... 2-61, 5-7
INSERT .. 2-118, 5-12
UPDATE .. 2-205, 5-10

REPLACE Parameter
BLDJDELF Command 2-14
CRTDASHLNK Command 2-31
CRTSCRIPT Command 2-33
CRTVIEW Command 2-45
CVTQRY Command 2-50
CVTWHBLDR Command 2-57
EXECUTE Command 2-107
MGRSQLOBJ Command 2-123
REPORT Command 2-145
SCHSCRIPT Command 2-171
STMFVARSUB Command 2-193

Report .. 1-8
REPORT Command .. 2-142
REPORT Parameter

CHGRPTD Command 2-25
CVTQRY Command 2-49
CVTRPT Command 2-52
DSNREPORT Command 2-69
DSPRPTD Command 2-84
PRTRPTD Command 2-140

I-6 Sequel 11 Programmer’s Guide - Index

REPORT Command 2-142
RTVRPTSQL Command 2-155

Report Writer Commands 2-3
REPORTVPT Command 2-148
REVOKE ...A-7
RGZDCT Command .. 2-149
ROLLBACK ... 5-4
RPTLIB Parameter

PRTAUDDTA Command 2-136
RPTNAM Parameter

PRTAUDDTA Command 2-136
RSMRPTDSN Command 2-150
RTF Format .. 2-105, 2-198
RTNLIB Parameter

RTVRPTD Command 2-152
RTVTBLD Command 2-157
RTVVIEWD Command 2-161

RTVRPTD Command .. 2-152
RTVRPTSQL Command 2-155
RTVTBLD Command .. 2-157
RTVTBLSQL Command 2-159
RTVVIEWD Command 2-161
RUNCMD Command ... 2-164
RUNCMDVPT Command 2-167
RUNSCRIPT Command 2-168
RUNSCRVPT Command 2-170
Runtime Prompt API

API (runtime prompt) 4-15
Runtime Prompts ... 4-4

S
SAVE Parameter

CHGRPTD Command 2-27
PRINT Command .. 2-132
REPORT Command 2-144
RTVRPTD Command 2-153

SCHLOCNAME Parameter
UPDVPTCMD Command 2-208

SCHSCRIPT Command 2-171
SCRETURN Command 2-173
SCRF Parameter

BLDJDELF Command 2-13
Script ... 1-8
SCRIPT Parameter

CRTSCRIPT Command 2-32
CVTWHBLDR Command 2-57
DSNSCRIPT Command 2-73
DSPSCRIPTD Command 2-89
RUNSCRIPT Command 2-168
SCHSCRIPT Command 2-171

Scripting Commands ... 2-4
SDF Format .. 2-105, 2-197
SECONDS Parameter 2-139
Security ... 3-1

SELECT .. A-8
SEQONLY Parameter

OPNSQLF Command2-126
SEQRTRNP Program ..4-15
Sequel Object List. See WRKSEQUEL Command
Sequel Objects ...7-1
Sequel Programming ...4-1
Sequel Security

Customizing ...3-22
Enabling ...3-3
Setting Up ..3-5

*SEQUEL SQL Syntax 2-44, 2-45, 2-51, 2-64, 2-65, 2-
174, ...2-175

SERVER Parameter
CRTVIEW Command2-44
CVTQRY Command2-51
DISPLAY Command2-64, 2-174
DSNVIEW Command2-78
SQLCLOSE Command2-190
SQLCONNECT Command2-190

SET Parameter ..2-204
SETDFT Command ..2-178
SETJDEOWA Command2-180
SETVAR Parameter

DELETE Command2-59
DISPLAY Command2-63
DSNREPORT Command2-70
DSNTABLE Command2-77
EXECUTE Command2-109
INSERT Command2-117
OPNSQLF Command2-128
REPORT Command2-144
RUNCMD Command2-165
RUNSCRIPT Command2-168
SCRETURN Command2-173
STMFVARSUB Command2-193
TABLE Command ..2-201
UPDATE Command2-205

SQAUDIT ...2-7
SQDATE Command ...2-183
SQDATE Data File ...2-183
SQL Naming2-44, 2-64, 2-174
SQL Parameter

CRTVIEW Command2-37
CVTSYNTAX Command2-55
DSNREPORT Command2-69
DSNTABLE Command2-76
REPORT Command2-143
RTVRPTD Command2-153
RTVTBLD Command2-157
RTVVIEWD Command2-161
RUNCMD Command2-164
TABLE Command ..2-194

SQLCLOSE Command2-190

Index I-7

SQLCONNECT Command 2-190
SQLDASHLNK Parmeter

CRTDASHLNK Command 2-30
SQLEXEC Output File ... 7-1
SQLEXEC User Space .. 7-1
SQLLEN Parameter

CVTSYNTAX Command 2-55
RTVRPTD Command 2-153
RTVTBLD Command 2-157
RTVVIEWD Command 2-161

SQLLICLCK Command 2-191
SQLPRT Printer Files .. 7-2
SQLRQS Message Queue 7-5
SQVER Command ... 2-192
SRCF Parameter

CRTSCRIPT Command 2-32
DSNSCRIPT Command 2-73

SRCHLIB Parameter
UPDVPTCMD Command 2-208

SRCMBR Parameter
CRTSCRIPT Command 2-32
DSNSCRIPT Command 2-74

SRTSEQ Parameter
OPNSQLF Command 2-128

Static Views ... 4-1
STMFVARSUB Command 2-193
STRDATE Parameter

GPHAUDSUM Command 2-113
String End-WRKPCFMT Command 2-218
Submitting Variable Views 4-23
SUBTREE Parameter

CRTDASHLNK Command 2-31
SUMMARY Parameter 2-133
SYNTAX Parameter

CRTVIEW Command 2-45
CVTQRY Command 2-51
DISPLAY Command 2-64
SCRETURN Command 2-174

System Naming 2-44, 2-64, 2-174

T
Tab Delimited Format 2-106, 2-199
TABLE Command .. 2-194
TABLE Parameter

CHGTBLD Command 2-28
DSNTABLE Command 2-76
DSPTBLD Command 2-93
RTVTBLSQL Command 2-159
TABLE Command 2-194

Tabling Commands .. 2-3
Tabling View .. 1-9
TDBASIC ... 2-94
TDELIM Format 2-106, 2-199
TDSQL ... 2-94

TEXT Parameter
CHGTBLD Command 2-28
CRTDASHLNK Command 2-31
CRTSCRIPT Command 2-32
CRTVIEW Command 2-46
DISPLAY Command 2-63
DSNSCRIPT Command 2-74
EXECUTE Command 2-108
PRINT Command .. 2-131
RTVTBLD Command 2-157
RTVVIEWD Command 2-163
RUNCMD Command 2-165
SCRETURN Command 2-174
TABLE Command 2-201

TIME1 Parameter .. 2-135
TIME2 Parameter .. 2-135
TIMFMT Parameter

RTVVIEWD Command 2-163
TIMSEP Parameter

RTVVIEWD Command 2-163
TITLE Parameter

CHGRPTD Command 2-25
REPORT Command 2-143
RTVRPTD Command 2-153

TODATE Parameter
DLTAUDDTA Command 2-66

TODOC Parameter
EXECUTE Command 2-105
TABLE Command 2-197

TOFLR Parameter
EXECUTE Command 2-105
TABLE Command 2-197

TOJOB Parameter
DLTAUDDTA Command 2-68

TOMSGQ Parameter
CFGQRYC04 Command 2-17

TORPT Parameter
DLTAUDDTA Command 2-67

TOSERVER Parameter
CVTSYNTAX Command 2-55
EXECUTE Command 2-108
TABLE Command 2-200

TOSTMF Parameter
EXECUTE Command 2-107
REPORT Command 2-144
TABLE Command 2-199

TOTABLE Parameter
EXECUTE Command 2-108
TABLE Command 2-200

TOTIME Parameter
DLTAUDDTA Command 2-66

TOUSER Parameter
DLTAUDDTA Command 2-67

TOVIEW Parameter

I-8 Sequel 11 Programmer’s Guide - Index

DLTAUDDTA Command 2-67
TXT Format .. 2-105, 2-198
TYPE Parameter

DSPDASHD Command 2-80
DSPRPTD Command 2-84
DSPSCRIPTD Command 2-90
DSPTBLD Command 2-94
DSPVIEWD Command 2-98
OPNSQLF Command 2-126
SCHSCRIPT Command 2-171

U
UDC Parameter

BLDJDELF Command 2-13
UNIQUEKEY Parameter

CRTVIEW Command 2-41
RTVVIEWD Command 2-162

UPDATE ..A-8
UPDATE Command 2-204, 5-8
UPDVPTCMD Command 2-208
USEIC Parameter

CVTWHBLDR Command 2-58
User Interface Command 2-3
USER Parameter

PRTAUDDTA Command 2-135
USRPRF Parameter

SETDFT Command 2-178
USRPRF(*OWNER)

Programs with ... 7-3

V
VALUES Parameter

INSERT Command 2-116
VARELEM Parameter

SCHSCRIPT Command 2-172
Variable type

DATE .. 2-33, 2-38, 4-6
EXPR .. 2-34, 2-38, 4-6
NAME .. 2-33, 2-37, 4-6
NUMBER 2-33, 2-38, 4-6
QSTRING 2-33, 2-38, 4-6

Variable Views ... 4-4
Variables ... 2-33, 2-37, 4-4
VARSPECS Parameter

CRTSCRIPT Command 2-33
CRTVIEW Command 2-37
RTVVIEWD Command 2-161

VDBASIC .. 2-81, 2-99
VDDBREF ... 2-81, 2-94, 2-99
VDSQL .. 2-99
VDVSPEC .. 2-90, 2-99
View ... 1-7
VIEW Parameter

BLDJDELF Command 2-12

CHGRPTD Command2-25
CHGTBLD Command2-28
CRTVIEW Command2-37
CVTQRY Command2-50
CVTVIEW Command2-56
DSNREPORT Command2-69
DSNTABLE Command2-76
DSNVIEW Command2-78
DSPVIEWD Command2-97
REPORT Command2-143
RTVRPTSQL Command2-155
RTVTBLSQL Command2-159
RUNCMD Command2-165
TABLE Command ..2-195

VIEWLIB Parameter
RTVRPTD Command2-152
RTVTBLD Command2-157

VIEWNAME Parameter
RTVRPTD Command2-152
RTVTBLD Command2-157

Viewpoint Listener ..2-212
VPDIR Parameter

CVTWHBLDR Command2-57
VPT Parameter

CRTDASHLNK Command2-30
CVTWHBLDR Command2-58
EXECUTEVPT Command2-112
REPORTVPT Command2-148
RUNCMDVPT Command2-167
RUNSCRVPT Command2-170

VPTRMTCMD Command2-212
VSPECCNT Parameter2-161
VWLIB Parameter

PRTAUDDTA Command2-136
VWNAM Parameter

PRTAUDDTA Command2-136

W
WAIT Parameter

CFGQRYC04 Command2-17
WAITTIME Parameter

VPTRMTCMD Command2-212
WebSphere ...2-105, 2-198
WEBURL Parameter

CHGAUTMODE Command2-18
WHBLDR Parameter

CVTWHBLDR Command2-57
WKS Format ..2-105, 2-198
WRKDCTOBJ Command2-215
WRKPCFMT Command2-217
WRKREPORT Command2-220
WRKSCRIPT Command2-223
WRKSEQUEL Command2-221
WRKVIEW Command ..2-224

Index I-9

X
XLS Format .. 2-106, 2-198
XLSX Format .. 2-106, 2-198
XML Database Format 2-106, 2-198
XML1 Database Format 2-106, 2-198

Z
ZERODATE Parameter

BLDJDELF Command 2-13

I-10 Sequel 11 Programmer’s Guide - Index

	Contents
	Introduction
	Components of Sequel
	Features of Sequel
	Sequel Objects
	Contact Fortra

	Command Reference
	ANZAUDDTA (Analyze Audit Data) Command
	BCHEXECUTE (Submit Execute To Batch) Command
	BCHPRINT (Submit Print To Batch) Command
	BCHREPORT (Submit A Sequel Report) Command
	BCHSCRIPT (Submit A Sequel Script) Command
	BLDJDELF (Build view from JDE definition) Command
	BLDOPTF (Build Option File) Command
	CFGQRYC04 (Set REPORT Message Handling) Command
	CHGAUTMODE (Change Authorization Mode) Command
	CHGVIEW (Change View Definition) Command
	CHGRPTD (Change Report Description) Command
	CHGTBLD (Change Table Description) Command
	CHKIFSLOCK (Check IFS Locks) Command
	CRTDASHLNK (Create Dashboard Link) Command
	CRTSCRIPT (Create Script) Command
	CRTVIEW (Create View) Command
	CVTPDMFSQL (Convert PDM File to Sequel) Command
	CVTQRY (Convert Query) Command
	CVTRPT (Convert Report Format) Command
	CVTSQTOIFS (Convert Sequel Objects to IFS) Command
	CVTSYNTAX (Convert Syntax) Command
	CVTVIEW (Convert View) Command
	CVTWHBLDR (Convert Warehouse Builder) Command
	DELETE (Delete Records With a View) Command
	DISPLAY (Display View Data) Command
	DLTAUDDTA (Delete Audit Data) Command
	DSNREPORT (Design A Sequel Report) Command
	DSNSCRIPT (Design a Sequel Script) Command
	DSNTABLE (Design A Sequel Table) Command
	DSNVIEW (Design A Sequel View) Command
	DSPDASHD (Display Dashboard Description) Command
	DSPRPTD (Display Report Description) Command
	DSPSCRIPTD (Display Script Definition) Command
	DSPTBLD (Display Table Description) Command
	DSPVIEWD (Display View Description) Command
	EXECUTE (Execute To A File) Command
	EXECUTEVPT (Execute a VPT Object) Command
	GPHAUDSUM (Graph Audit Summary) Command
	INSERT (Insert Records Into A File) Command
	LSTDCTOBJ (List Sequel Authority By Object) Command
	LSTDCTUSR (List Sequel Authority Dictionary By User) Command
	MGRSQLOBJ (Migrate Sequel Objects) Command
	MNTHOSTF (Sequel Host File Maintenance) Command
	OPNSQLF (Open Sequel File) Command
	OUTFILE (Execute an SQL View) Command
	PRINT (Print Sequel Data) Command
	PRTAUDDTA (Print Audit Data) Command
	PRTAUDDTL (Print Audit Detail) Command
	PRTAUDFIL (Print Audited File Usage) Command
	PRTAUDPTH (Print Audited Access Paths) Command
	PRTRPTD (Print Report Description) Command
	PRTSEQUEL (Print Sequel Objects) Command
	REPORT (Run A Sequel Report) Command
	REPORTVPT (Run a ViewPoint Report Object) Command
	RGZDCT (Reorganize Sequel Authority Dictionary) Command
	RSMRPTDSN (Resume Report Design) Command
	RTVRPTD (Retrieve Report Description) Command
	RTVRPTSQL (Retrieve Report SQL) Command
	RTVTBLD (Retrieve Table Description) Command
	RTVTBLSQL (Retrieve Table SQL) Command
	RTVVIEWD (Retrieve View Description) Command
	RUNCMD (Run Commands Using Sequel Selection) Command
	RUNCMDVPT (Run a Command Over All Records) Command
	RUNSCRIPT (Run Script) Command
	RUNSCRVPT (Run a VPT Script Object) Command
	SCHSCRIPT (Search Script) Command
	SCRETURN (Return Script View) Command
	SEQSETJVAE (Set Sequel Java Environment) Command
	SETAUDDFT (Set Audit Default) Command
	SETDFT (Set Sequel Defaults) Command
	SETJDEOWA (Set Oracle JDE OneWorld / EnterpriseOne Attributes) Command
	SQDATE (Add/Remove SQDATE data) Command
	SQJCRO (Run CRO Report) Command
	SQJSTRSVR (Start Sequel JAVA Server) Command
	SQLCLOSE (Sequel Close Connection) Command
	SQLCONNECT (Sequel Connect) Command
	SQLLICLCK (Sequel License Locks) Command
	SQVER (Sequel Version) Command
	STMFVARSUB (Stream File Variable Substitution) Command
	TABLE (Execute To A File) Command
	UPDATE (Update Records In A File) Command
	UPDRMTCMD (Update Remote Command) Command
	VFYREPO (Verify Repository) Command
	VPTRMTCMD (Viewpoint Remote Command) Command
	WRKAUDDTA (Work With Audit Data) Command
	WRKAUDQRY (Work With Audit Data Query) Command
	WRKDCTOBJ (Work With Sequel Authority by Object
	WRKDCTUSR (Work With Sequel Authority by User) Command
	WRKPCFMT (Work With PC Formats) Command
	WRKREPORT (Work With Reports) Command
	WRKSEQUEL (Work With Sequel Objects) Command
	WRKSCRIPT (Work With Scripts) Command
	WRKVIEW (Work With Views) Command

	Sequel Security
	Enabling Sequel Security
	Setting up the Authority Dictionary
	Work With Sequel Authority By User
	Work With Sequel Authority By Object

	Printing the Authority Dictionary
	List Authority Dictionary By User (LSTDCTUSR) Command
	List Authority Dictionary By Object (LSTDCTOBJ) Command

	Reorganizing the Authority Dictionary
	Customizing Sequel Security

	Sequel Programming
	Simple View and Report Execution
	Variable Views
	ORDERSUMP Example
	Runtime Prompt API

	Program Created Statements and Views
	Creating Sequel Statements Using String Concatenation
	Using Existing Views as a Starting Point

	Execution Time Report Specification
	Submitting Requests
	Restricting Sequel Requests to the Batch Environment
	Submitting Variable Views

	Processing Query Data with HLL Programs

	Data Modification
	Commitment Control
	Deleting Records
	Changing Records
	Creating Records

	Performance
	Classic Query vs. SQL Query Engine
	Index Creation
	Processor Usage
	Execution Time

	Sequel Objects
	SQLEXEC Output File
	SQLEXEC User Space
	Distribution of Sequel Output
	Programs with USRPRF(*OWNER)
	SQLRQS Message Queue
	Menu Driver Files

	Appendix
	Dynamic SQL/400 Access/400 Access (DYNSQL)
	DYNSQL Objects
	Using DYNSQL
	DYNSQL Restrictions
	SQL/400 Statements Supported By DYNSQL
	Examples

	Index

